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ABSTRACT

A definition of factorial effects relying on the treatment structure defined by the
hierarchies is proposed. It applies to non uniform situation, where the number of levels of
a nested factor within the classes defined by each set of levels of its nesting factors may
vary. A reparametrisation whose parameters belongs to these factorial effects is obtained.
The development is based on the notion of reference treatment design, a conceptual design
that can be used as a basis of comparison to assess the properties of any factorial design.

Key words: Analysis of variance; ANOVA; Orthogonal designs; block structure; projective
limit; partially ordered set; POSET; hierarchy; nesting factor; lattice

1 Introduction

Consider a study to determine the influence on a response y of two crossed factors A, B.
We denote by Ty and T’g their respective sets of levels. The set 1" of feasible treatments
is the cartesian product 1" = Ty x Tg. The expectation of the response when treatment
(a,b) € T is experimented is denoted by 7(a, b) and is called the effect of treatment (a, b).
Marginal means of these treatment effects are usually introduced. These means may be
weighted and are denoted with the usual dot notation. They are

the general mean D T(eye) = D>y Wila,b)7(a,b)
the means by level of A : 7(a,.) Yy Wa(b)r(a, b
the means by level of B : 7(.,b) Yo Wala)7(a,b)

where the weights W (a,b), Wa(a), Wg(b) satisfy

Y Wala)=1, Y Wsd)=1, W(a,b)=Wala)Ws(). (1)

The use of a system of weights Wg(b) independent of a to define the means by level of
A guarantees that the differences 7(a, .) — 7(a/, .) can be attributed to the factor A and
not to the factor B.



general mean s = 7(e, )
main effect of a Cag, = T1(a,.)—p
main effect of b By = 1(e,0)—p

interaction effect of (a,b) : v = 7(a,b) — (4 + ag + Bp)

Table 1: Definition of factorial effects in the two-way layout

The general mean, main effects and interaction of factors A and B are defined from
these means as indicated in table 1.

In most cases, the weights Wy4(a) are chosen equal to 1/|T4|, the weights Wg(b)
equal to 1/|Tg| and the weights W (a, b) are then all equal to 1/|T|. But it can be natural
in some circumstances to use unequal weights. Scheffe [15] gives such an example. Factor
A is the variety of cotton, B is the location in California. If a single variety is to be
selected for all of California, it may be reasonable to weight the different locations with
weights W (b) proportional to the total acreages of cotton in the corresponding regions.

In non uniform cases, when the number of levels of a nested factor within the classes
defined by each set of levels of its nesting factors may vary, the weights cannot generally
be chosen equal.

Consider the following very simple example. There are three treatments, a control
and two other variants of a new treatment to be compared to the control. A possible way
to deal with that situation is to introduce a factor A whose levels are 0 for the control, 1
for the new treatments, then a factor B nested within A, with levels 0 for the control, 1
and 2 for the two other treatments. We denote by T4 and T'g the set of levels of the two
factors, by ¢ap : Tp — T the mapping defined by ¢p45(0) =0, ¢pap(1) =1, ¢ap(2) =1
which gives for each level of B the corresponding level of A.

The treatments can be represented by the pairs (a,b) € T4 x T which satisfy
®a5(b) = a. We denote as previously by T the set of these treatments and by 7(a,b) the
effect of treatment (a, b) € T. Table 2 gives the corresponding means and factorial effects.
The weights W (a,b), W4(a), Wg(b) must satisfy in that hierarchical case the following
constraints:

> Wale)=1, Y Wgd)=1, W(a,b)=Wala)Ws(). (2)

bed b (a)

If a = ¢ap(b), we say that b is nested within a, or more simply is within a. It
is natural to choose the weights Wg(b) equal within each level a of A. This leads to
Wg(0) =1, Wg(1) = Wg(2) = 1/2. The weights W4(a) may then be chosen equal to 1/3
for a = 0 and 2/3 for a = 1, which makes the W (a, b) all equal to 1/3. Alternatively they
may be chosen equal to 1/2, which gives W (0,0) = 1/2 and W(1,1) = W(1,2) =1/4. In
that latter case, the control is given twice the weight of the two other treatment in the
general mean. Of course any other intermediate choice is possible.

It is in general not very difficult to define similarly the factorial effects of interest
in a given more complex situation involving both nesting and crossing. However general
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general mean co7(e, ) = Z W (a,b)7(a,b)

(a,b)eT

means by level of A : 1(a,.) = Z Wg(b)7(a,b)
be¢ i (a)

general mean : o= T(ey.)

main effect of a : a, = 7(a,.)—p

main effect of b within a = ¢pap(b) : Baw = 7(a,b) —7(a,.)

Table 2: Definition of factorial effects in the two-way nested layout

softwares must be able to deal with any system of weights and any kind of treatment
structure. There is thus a need to have a clear and general process to define the factorial
effects from this structure even when it is not uniform.

Reference design.

Such a general process has been clearly described for orthogonal designs [24]. What-
ever nature, orthogonal or not, has the actual design under consideration, this process
can be used to define the factorial effects provided the set 71" of all feasible treatments,
with suitable weight function W and model &, itself defines an orthogonal design. The
latter is called the reference design. It is a conceptual one, used to define factorial effects,
study the aliasing or assess, by comparison with it, the quality of any actual design under
investigation.

In the first example with two crossed factor, the orthogonality of the reference design
T = T4 xTpg follows from the condition (1) imposed to the weights. More generally, assume
there are n crossed factors with sets of levels T}, ... , T},, and that the weight function W
is a product of marginal weights:

Wity, ... tn) = Wits) - Wa(tn) with Y W;(t;) =1 for all i. (3)

t;€T;

Let I = {1,...,n} and for each subset J of I, denote by ¢; the canonical projection
(ti)ier = (ti)ics of index J. Let then & be the family of subsets of I containing, besides
the empty set associated with the constant factor and the sets {1}, ..., {n} associated
with the main effects, all the subsets associated with non zero interactions. The family
&, possibly completed in a suitable way, can be assumed to be closed for the intersection.
Then the triplet (7', W, £) defines a reference orthogonal design and thus induces a
decomposition into meaningful factorial effects.

Note that this kind of reference design can also be used when there are nested
factors, provided each factor can be identified with a canonical projection ¢;. In that
case, if J is a subset in £ and ¢ € J, any factor j nesting the factor ¢ must also belong to
J. Therefore if i is nested within some other factor j, the singleton {i} does not pertain
to £.

That kind of reference design was used to study aliased effects and derive principal
factor efficiencies in several contexts [10, 12, 8]. The corresponding block structure, formed
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by the partitions induced on 7" by the factors, has been studied under the name poset
block structure [6, 4]. If the weights are equal, the associated factorial effects are those
which are generally taken into account by variance analysis software in the uniform case.
The associated linear functions of the parameters are known, when they are estimable, as
the estimable functions of type III [16] [18].

However the structure associated with this kind of reference design is necessarily
uniform. Section 4 shows how an orthogonal reference design can be deduced from the
knowledge of nesting relations in a very general, possibly non uniform, context. Section 5
gives then a process leading to a reparametrisation whose parameters belongs to the
factorial effects induced by this orthogonal reference design.

The reference design can also be used in variance analysis to provide a rigorous and
easy definition of adjusted means, hence of most interesting non standard linear functions
of the parameters (section 6).

To motivate this rather technical development on non uniform designs, we first

introduce in section 2 some considerations on the different strategies nowadays used in
ANOVA.

In section 3, we then recall the main notions needed to define and check design
orthogonality. The notations take the weight function into account.

2 Factorial effects, tests of hypothese in ANOVA

The definition of factorial effects and associated sum of squares in unbalanced design is
the matter of a long controversy, which clearly appears in the article with discussion [14]
and is well summed up in [17]. It is still alive nowadays [3], [9] [19].

As written in [17], the linear modelers can be divided into two camps, the R-
notationers and the R*-notationers. To test a factorial effect, main effect or interaction,
the R-notationers use the reduction R of the residual sum of square due to the intro-
duction of this factorial effect in the model. They do not reparameterize the model nor
introduce constraints on the parameters. Hence to test a factorial effect, they have to
exclude other effects imbedding it from the model. For instance, let A, B, C' be three
factors such that C is nested in A, and B is crossed with A and C. If the model is
A+ B+ AB + AC + ABC, R-notationers usually compute the AB sum of square in the
model without ABC, the A sum of squares in the model without AB, AC, ABC that is
in the additive model A + B.

On the contrary, R* notationers define and test all factorial effects in the same unique
whole model, using marginal means as in table 1 to define factorial effects imbedded
in other effects of the model. To do so, they have to introduce a system of weights
satisfying relations like those in (1) and (2), or the equivalent system of constraints on
the parameters.

In uniform situations, a natural uniquely defined system is the uniform weighting
which is generally the only one adopted by ANOVA softwares. We show in section 2.2



that this uniform weighting can be completely inadequate to analyse some very useful
designs even in a case including only crossed factors.

In non uniform situations with nested factors, the example in the introduction shows
that things are far more complicated. Section 2.3 considers two other simple examples
with non uniform data. Analyses of variance performed on these examples give results
which vary from one software to the other in an incomprehensible manner. The fact
had already been noticed by Searle [19] who concluded that it is better not to use the
R*-approach (i.e. type III sum of squares) until things are clarified.

This article clarifies the situation by showing how to define a suitable system of
weights in every situation. To study the properties of the associated reparametrisation in
the more general case, we need some notions of algebra which may appear quite sophis-
ticated for the problem considered. But the results are in fact very simple and allow to
propose a clear and coherent way to perform ANOVA in non uniform situations.

However to prompt R-practitioners to read what follows, we first show in the next
section 2.1 all the difficulties raised by the R-approach even in the simple case of an
unbalanced two-way layout.

2.1 Difficulties with the R-approach

At first sight, the R-approach may appear simpler than the R* one because it does not
require the somewhat subjective choice of a system of weights to select which sums of
squares and associated contrasts are inspected. However, in the R-approach, the expec-
tation within the whole model of the contrasts or sum of square associated with a non
maximal factorial effect is design dependent. This generally makes these contrasts or sum
of square uneasy to interpret, and forbids comparison between homologous effects coming
from designs with different numbers of replications.

To illustrate this point, let us consider again a study with one response y and two
crossed factors A, B. We assume that A and B have two levels coded —1 and 1 and
that the number of replications of the treatments is as given in table 3. There is only
one observation for treatment (—1,—1) and m for each of the other treatments. As m
increases, the design is increasingly non orthogonal and unbalanced. Of course no one

B

-1 1
A —1 1 m
1| m m

Table 3: An unbalanced design with two two-levels factors

would use such a design when m >> 1, but this simple situation makes it possible to
understand what can occur in a much more less trivial way when the number of factors
exceeds two.



We denote by yu; the jth response for treatment (a,b), where (a,b) is one of the
four treatments (—1,—1), (—=1,1), (1,-1), (1,1), and let 7(a,b) = E(yqu;)- The factorial
effects are defined as in table 1, with constant weights W (a,b) = 1/4. Since there are
only two levels for each factor, it is easy to check that oy, = a «, B, = b 3, Yap = ab 7y
where

a = Y1, 1) +7(1,-1) —7(-1,1) = 7(-1,-1)) = 3(r(1,.)—7(-1,.))
B H(r(1, 1) —7(1,-1) + 7(-1,1) = 7(-1,-1)) = i(r(.,1) —7(.,-1)) (4)
v = Yr(@1,1)-7(1,-1) = 7(-1,1) + 7(-1,-1))

The equality v, = 7(a,b) — (1 + aq + Fp) in the last row of table 1 can be written as
7(a,b) = pp+ aa + b5 + aby . (5)
It leads to the linear model
E(y) = X0 = X 16, + Xoy

where y is the vector of 3m + 1 responses, 0 = (i, o, 5,7)", 61 = (p, @, 8) and X is the
matrix in table 4 which is decomposed for further use into the submatrices X; including
the 3 columns associated with p, o, 8 and the one column matrix X, associated with ~.

X
X1 X2
—_— ~~
" a B it
1 -1 -1 1 3m+1 m—1 m—1 —-m-+1
v m—1 3m+1 -m+1 m-1
1 _1 1 _1 XX = m—1 -m+1 3m+1 m— 1
1 m rows -m+1 m-1 m—-1 3m+1
1 1 -1 1
1 m rows m41 __m—1 __m-—1
ces 2m(m+3) 4m(m+3) 4m(m+3)
/ -1 | _ -1 +1 —1
(X1X1) 4m7?m+3) 2m7m+3) 4m7?m+3)
1 1 1 -1 _ m—1 m—1 m-+41
i m TOWS 4m(m+3) 4m(m+3) 2m(m+3)

Table 4: matrices X, X1, X'X, (X]X;)~! for the example of table 3

In the R*-strategy, 6 is estimated by § = (X'X)~'X'y (we use a tilde to denote a
R* estimate). It is equivalent to estimating each 7(a, b) by the mean y,,, of the responses
to treatment (a,b) and then to get the estimates of «, 3, v by replacing each 7(a,b) in
(4) by its estimate y,p,. Thus

B 1
a = Z(yl,l,. F+ Y1, = Y11, —Y-11,.) 5



1

;)” = Z(ylylan - yl;_lan - y_lali' + y_l’_l) ? (6)

Users of the R-strategy estimate ¢, = (u, o, )" only in the model with v = 0, that
is by 6, = (X]X;) ' X{y. The matrix (X]X;) ! is given in table 4. Using it, it is easy to
check that the estimate of « in this context is

1 m+1

y— — | ——— —y_ -~ — Y 1 7
o ma 3 5 (ia,. —Y-11,.)+ W11, —Y-1,-1,.) (7)

The estimate of 3 is similar. The variances of @ and & can be deduced from those of the
means. Under the usual assumption Var(y) = 0?1, we have since y_; 1, =y_1,1

2
var(y_1,-1,.) = o?, var(yi,.) = var(y_1,1,.) =var(yi_1,.) = -

Q

hence

1 2 3

var (&) = #—2_3)02, var(@) = Z (1 + E) . (8)
If v = 0, both & and & are unbiased estimates of « and (8) then shows that & is a better
estimate of o than &. Note however that the ratio

var(é) 1 (m+3)°

var(@é) 8 m+1

increases with m, but remains smaller than 2 if m < 10 so that the superiority of the
R-estimate over the R*-one becomes decisive for v = 0 only for very large values of m.

But in such an experiment, one can never assume v = 0. Even if the test of the
interaction failed to reject this hypothesis, this does not mean that v = 0, but only that
v is too small to detect if it is greater or smaller than 0. To take this into account, there
are two possible attitudes.

1. Choose the R-approach, but carefully look at the expectation of & and B for the
interpretation. In the example, the expectation of &:

1 m—+1
m—+ 3 2

E(a) = (r(1,1) = 7(-1,1)) + (r(1,-1) = 7(-1,-1)) | ,
gives, when m is large, nearly all the weight to the A-effect for b = 1. Note that
if the numbers of replications in cells (1,1) and (—1,—1) were interchanged, the
A-effect would on the contrary give all the weight to level b = —1. Thus if v # 0,
the definition of the A-effect strongly depends on the experiment. Provided one
is aware of that and does not try to compare estimates & coming from different
experiments, it may seem sensible to adapt in this way the definition of the A-effect
to the data.

But continuation of this logic, which selects the contrasts examined according to
the data to make the better use of the available information, should also lead to the



examination of the A-effect in the model excluding 8 as well as 7. In this model,
7(a,b) = p + aa, « is estimated by

1 <y1,1,. tY,-1,. my-11.+ y—l,—l,.)

&=z
2 2 m+1

with a variance

@ (11 )

ar(@) =— | — + ——

Y= em T mrt)’

which is even lower than var(&). The expectation of this & under the whole model

become even more difficult to interpret as it is a function of the three parameters
of model (5) which can be non zero even when 3 is the only non zero parameter.

Such an approach using nested models to explore the data has thus the advantage
of adapting itself to the data to make the contrasts examined more precise. But
it leads to contrasts that are data dependent, difficult to interpret, the more so as
the model becomes more complex, involving more factors, more interactions and
possibly a mixture of qualitative and quantitative factors. This approach should
therefore be avoided unless a strong non orthogonality induces a drastic increase
of variance on some parameters. An extreme case is when the columns X; and X,
associated with two parameters 6 and 1 are equal : X; = X,. Let then X, be the
submatrix made up with the other columns of X and 6, the corresponding vector
of parameters. The model is

E(y) = XQGO + X§5 + XWTI = X(]eo + X5(6 + 77) .

In the whole model, § and 1 cannot be estimated. But if X, is suppressed from
the model and X; is not in the space generated by X, 0 + 7 can be estimated as
the parameter associated with X;. If § and 7 pertain to single factorial effects, the
sum cannot generally be given any simple interpretation. But if its estimate has
an important absolute value, it indicates that either ¢ of n or both have important
values. This can prompt the experimenter to go on the experimentation to get sep-
arate estimates of them. In some cases, consideration making use of past knowledge
or of the other estimates in §; make it possible to decide which of § or € accounts
for the importance of the sum without further information.

It may therefore be appropriate when examining a factorial effect to drop the terms
that are highly non orthogonal with it in the model. But they should be the only
terms dropped, because dropping terms makes the contrasts examined depend on
the hazard of the data and therefore complicates the interpretation. In particular,
there is generally no reason while examining some effects to drop all the terms
imbedding it.

A final argument against the systematic use of R-approach is the impossibility to
compare with it data coming from different designs. This approach is therefore of
no use for the design of experiment and never appears in the literature on factorial
designs.

. The second attitude is to adopt the R-approach as a way to get good biased es-
timates of the parameters in model (5). When v = 0, the R-approach leads to a
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better estimate of o than the R -approach. So it can be hoped that when 7 is not
significantly different from 0, the R-estimate & has a better MSE (Mean Square
Error) than the R* estimate &. Unfortunately, we show below that this is wrong in
many contexts.

The estimate & is by construction unbiased and it therefore follows from (8) that

MSE(&) = var(d) = ‘1’—; (1 + %) .

The bias for 6, is (X!X;) *X!X57y. The o coordinate of this vector is :

m—1

So

e~ [t 2 2]

The ratio of these two MSEs is

MSE(d) _ 8(m+1) M(7)2

MSE (&)  (m+3)2 (m+3)% \o
= v + b (g)Q
where:
_8(m+1) _ 16m(m —1)°
- (m+3)?  (m+3)3

The R-estimate is better than the R* one if v + b(y/0)? < 1, that is

1- 3
MSE (&) < MSE (@) = (7/0)* <~ = ”f;ﬂ .

)

Thus when 7/0 is greater than

S = /(m+3)/16m 9)

the R*-estimate & is better than the R-estimate &. Table 5 gives the threshold S
for each m < 10. A question which naturally arises is then : what is the probability
to reject the hypothesis v = 0 of no interaction when v/o is equal to S?

The estimate of v in the interactive model is given by (6). Its variance is

m+3 ,

e ko?
16m0 o

var(y) =

where

m—+3
k= —. 10
16m ( )



The test F of the hypothesis v = 0 is thus

7k
&2

F =

where 62 denote the residual variance, computed with M = 3(m — 1) degrees of
freedom. Under the usual normality assumptions, we have

v Y
—NN—al ’
Vko ( ko )

and thus

~2 2 2

6%/0? ko?

where Fj p(A) denotes the non central F-distribution with 1 and M degrees of
freedom and non centrality parameter .

If v/o is equal to the threshold S given by (9), it follows from (10) that the non
centrality parameter on the right of (11) is 1. The probability P; to reject the
hypothesis v = 0 at level 5% with this non centrality parameter is given in table 5.
We also give in this table the probability Py, to reject the hypothesis v = 0 at the
5% level if 7v/o is ten times the threshold S (the non centrality parameter is then
equal to 10). As this table shows, there is a wide range of values of /o where the

m 2 3 4 3 6 7 8 9| 10
S| 0410.35]0.33(0.32{0.31| 0.3]0.29 |0.29 | 0.29
P, 1011]0.14(0.15|0.15]0.16 | 0.16 | 0.16 | 0.16 | 0.16
Py | 0.57|0.75| 0.8/0.83]0.84|0.85|0.85|0.86|0.86

Table 5: Comparison of R and R* estimates

estimate & of the A-effect in the model with interaction has a better MSE than the
estimate & in the additive model although there is a very little chance to detect the
interaction.

Indeed, even if the interaction is found significantly different from 0, looking at the
mean A-effect o defined in (4) still makes sense. If this A-effect is found much larger
than the interaction, then it can be sensible from a practical point of view to neglect
the interaction even if it is statistically significant. On the contrary, if this A-effect
is of the same order or even smaller than the interaction, then this indicates that
the two factors cannot be considered separately and that the four means have to be
examined and compared as if they were the levels of the same four-level factor.
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2.2 An example with crossed factors and unequal weights

As already mentioned, though in most uniform circumstances it is natural to use equal
weights to define marginal means, unequal weights may sometimes be more appropriate or
even essential. [11] gives an example where choosing the classical uniform weights makes
the results very difficult to use.

The example comes from a study on the influence of cheese making conditions on
the texture and quality of the Arzia-Ulloa cheese, a traditional Galician cheese [1]. In
this study, six 2-level and one 3-level process factors are taken into account in a design
with 32 units. The units are structured in 8 blocks of size 4 (factor j) corresponding to
the sets of 4 cheeses made the same day with the same milk. The 3-level factor, denoted
by A, is the salting conditions : the salt can be added either in the milk, or in the curd,
or in the brine which receives the fresh cheese.

To find a suitable design, it can be first done as if the salting conditions —factor
A- had 4 levels defined by 2 pseudofactors A;, A,. It is easy to find the two possible
sets of defining relations ensuring resolution IV and then, by backtrack search, to find for
each of these two sets three 2-level block pseudofactors j;, jo, j3 defining a system of 8
blocks orthogonal to main effects. Table 6 gives the definitions and properties of the two
corresponding regular fraction.

Ay A3 D; BF), (CE; A1 AsG), (DE; Ay Ao F)

Definition First fraction Second fraction
E = AiBCD, F = A3BC, G = AyBD E = A1BC, F=A,BD, G=A,CD

blocks j1 = A2 B, ja = A3C, j3 = AsD j1=A1B, j»=A1C, jz=A1D
Whole ot A1BEFG, A{BCDE, A; Ay DEF, AyBCE, A BDF, A,CDG,
of defining A1AsCEG,A2BDG, A2 BCF,CDFG A1EFG,BCFG,BDEG,CDEF
contrasts

([j2); 42C: BF). (1sl: CD FG), ([js) A2 D 5G), | (s O, 4D BID. (sl 56, a5 D),
aliased facto- ([4143]; A2G; BD), ([j1j273); A1A2E; DF;CG), gBH SIECDDFG 113?)’((532]1 ?g Allc;‘ %'é’))’
. AsF; B F;DG;A2B), (A1 ACy E )
rial effects g[ﬁh] 2 BO), ([j1]; OF; DG; A3 B), (41425 BG), ([j14243], CF, DE, BG)

unaliased fac-
torial effects

Ay, As, A1As, B,C,D,E,F,G,
A1B,A1C, A1 D, A E, A F,
A1G, AsE, A1 Ay B, BE

A15A27A1A2;B; CaDaEaFa Ga
AsB, AsC, AsD, AsE, AsF, AsG,
Ay A B, A1 AsC, Ay As D,

Ay AsE, A1 AsF, A{ AsG

residual de-
grees of free-
dom

3

Table 6: The two regular 4 x 26/8 fractions of resolution 4

To give 3 instead of 4 levels to factor A, the levels (—1,1) and (1, —1) defined by A;,
A, are collapsed, in the way defined by Addelman [2], to one unique level which therefore
appears twice as often as the two other levels, that is 16 times instead of 8. It is easy to
derive the properties of the resulting design from those of the initial regular fraction and
to show that the collapsing of levels preserves the resolution IV, provided one gives to the
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level resulting from the collapse twice the weight of the other two levels when defining
the main effects and interactions.

It was the second fraction which was in this case selected because it leads after the
collapse to a fraction which can estimate, besides main effects, all two factor interactions
involving A in the model including all two factor interactions and the block effects. It
turns out that the corresponding design is of resolution IV even if the levels of A are
uniformly weighted. But this is not true of the first fraction. For this fraction, given
explicitly in table 7, table 8 gives the linear estimable combination of parameters for two
reparametrisations. The weighted one uses the adequate unequal weights preserving the
resolution IV, while the classical one based on uniform weights loses it. In this second
parametrisation, some main effects are confounded with two factor interactions which
makes the results extremely difficult to interpret.

.

O OHOFRFOHHOFHFOFRFOHFHFOFOFOHFOFEFOHFOFORFORFROR
N OO HOOHR OO HOOHRHOOHHOOHHOOHRHOOL
CoOHRHRHRHROOCOHHRHRHROOCOOHRKRHRR RO RRRHOOR
OCOHHHFOOHHFOOHHMFHFOOHMFHFMFEFOOHMHEHFOOHFEFOOKHEMFEFOOW
ORHNOFRHFNORFEFNORFEFNOHRNOHRHNOG=HNO— — N &
COC 0O R HHHRPOOOORHHRHOOCOOHRRHHROOOOKRRK =+~ Wm
00O OO R R, R EFE RO R~k e Q
C 00O O OO0 RRRERR MR R R RRRRR R R =~ J
OO OO~ O RO PO OORORHOHOHROROO R~ O~
OO}—‘}—‘}—‘}—‘OO)—‘}—‘OOOOP—‘)—‘OO)—‘P—‘)—‘}—‘OO)—‘}—‘OOOO}—‘}—"E
OOI—‘)—‘P—‘I—'OOOOI—‘»—‘)—‘»—‘OO)—‘HOOOO»—‘I—'»—‘)—\OOOO)—‘P—‘Q
NNOOCWWEABRUUNNHRE OO RN U R RWWDO -1 IS,

Table 7: The first fraction defined in table 6

2.3 Analysis of variance of non uniform data: the puzzle

Known softwares offering a R* approach only propose equal weights. They are thus unable
to give a proper analysis for resolution IV designs as the one mentionned in the previous
section. But they can correctly analyse most cases where factors are either crossed or
nested, provided nesting relationship are uniform. Following Speed and Bailey [21], we
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Weighted Classical

parametrisation parametrisation

A A

A? A?

B B

C C+E.G/3

D D+ E.F/3

E E+(C.G+D.F+j7)/3

F F+ D.E/3

G G+C.E/3

A.B A.B

A’.B A’2.B

A.C AC

A C+E.G A?.C+2V2E.G/3

A.D A.D

A2.D+ E.F A2.D+2V2 E.F/3

AE AE

A2E+C.G+D.F+j"|A2.E+2V2(C.G+ D.F +;7)/3

AF AF

A2.F+D.E A2.F+2v2D.E/3

A.G AG

A .G+ CE A2.G+2V2C.E/3

B.C +j* B.C + j*

B.D + j5 B.D + 5%

B.E B.E

B.F + 52 B.F + j2

B.G + 53 B.G + ;3

C.D + F.G+ 5% C.D + F.G +

C.F+D.G+j C.F+D.G+j
Residual degrees of freedom : 4

Table 8: Aliased effects with two different parametrisations
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say that a factor B nested in A is uniformly nested if the number of levels of B is the
same within each of the classes defined by the levels of A.

Whenever there are non uniform nestings, most softwares still produce a result, but
the results may differ from one software to another.

Consider again the situation with 3 factors used to illustrate the R-notation in the
beginning of section 2. Assume that A and B have two levels and that C' has three levels
for A = 1, but only two for A = 2. Factor B is completely crossed with C' and A. The
design is given on the left of table 9 together with a simulated observed variate y. Some
treatments have been repeated twice in order to get residual degrees of freedom. Table 10
gives the sum of squares obtained with the model A+ B+ AB + AC' + ABC by different
softwares. For three of these softwares, the corresponding program are given in table 11.

Design
A C B y
1 1 1 54
1 1 2 14 Cell means and B-marginal means
1 2 1 21 B
1 2 1 17 1 2
1 2 2 36 Wi Ws Wy A (C | mean nb.rep mean nb.rep
1 2 2 28 1/6 1/5 p/3 1 154 (1) 14 (1)
1 3 1 24 1/6 1/5 p/3 - 219 (2) 32 (2)
1 3 1 25 1/6 1/5 p/3 - 31245 (2 16.5 (2)
1 3 2 18 1/4 1/5 (1—-p)/2 2 1 |145 (2) 23 (2)
1 3 2 15 1/4 1/5 (1—-p)/2 — 2 |145 (2) 18 (1)
2 1 1 17 marginal means for Wy 23.5 62/3
2 1 1 12 marginal means for Wy 25.3 20.7
2 1 2 21 marginal means for W, 24.029 20.676
2 1 2 25 p = 0.5294117647
2 2 1 15
2 2 1 14
2 2 2 18

SAS type IIT mean square for B can be computed from the B-means obtained
with the weight W,,, where p = 0.5294117647

Table 9: Example with C nested in A and B crossed with A and C'

factorial | d.f. Mean Squares

effect weights W, | weights Wa | SAS type III | Splus UNIX | MINITAB | SPSS 6.1
A 1 314.29 314.29 314.29 0 314.29 223.21
B 1 30.03 81.39 42.75 0 30.03 34.30
A.B 1 291.84 291.84 291.84 0 291.84 118.30
AC 3 84.53 84.53 84.53 84.53 84.53 84.53
A.B.C 3 317.67 317.67 317.67 317.67 317.67 317.67

Table 10: Mean Squares for Example of table 9 (d.f. : degrees of freedom)
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SAS

data d;
infile ’nonunifl.don’;
input A C B V;

run;
proc glm data=d;
class A C B;

model V=A C(A) AxB B CxB(A)/ ss3 e3;
lsmeans A C(A) AxB B CxB(A);
run;

Splus

d<-read.table("nonunifil.don",header=T)
d$a<-factor (d$a)

d$b<-factor (d$b)

d$c<-factor (d$c)
result<-aov(v~a/c*b,d)
dropl.aov(result,scope=result$call)

summary (result,ssType=3) (Windows version only)
SPSS (release 6.1)
MANOVA

y BY a(1 2) c(1 3) b(1 2)

/NOPRINT PARAM(ESTIM)

/METHOD=UNIQUE

/ERROR WITHIN

/DESIGN = a, b, ¢ WITHIN a, a BY b, b BY ¢ WITHIN a .

Table 11: Programs used to compute the MS in table 10
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Most results are identical, except for the main effect of B. With the software Splus,
there are some differences between the UNIX version 3.2 and the Windows version 4.5
that were used. In the UNIX version, the function dropl.aov was used to drop terms
from the model in the hope of getting some R* type sums of squares. But this version of
Splus [22] does not cope with non uniformity and considers that C' should have a third
level within level 2 of A. It therefore adds 2 supplementary columns in the X matrix of
the linear model and produces the diagnostic that 2 out of 12 effects are not estimable.
It consequently produces a lot of zeros in the analysis of variance “with dropl.aov”’. The
Windows version allows to obtain the same type III sums of squares as in SAS with
the statement “summary(result,ssType=3)” applied to the result of “aov”’. The SPSS
windows version [23] also provides the type III sums of squares of SAS in a standard way.
However Drton [9] found with the unique sum of squares of SPSS release 6.1 and the
same data a different result which we reported on the right of table 10. SPSS warns the
user that “UNIQUE sum of squares are obtained assuming the redundant effects (possibly
caused by missing cells) are actually null” and that “The hypothesis tested may not be
the hypothesis of interest”. It is also possible using the “difference contrasts” in SPSS to
get the sums of squares corresponding to the weights W, [9].

Since there is a term ABC in the model, marginal means can be computed from the
cell means which are given on the right of table 9. The marginal means for B are given
at the bottom of the table. There are two natural ways to compute them and hence the
main effect for B. In the first way, equal weights are given to the 5 levels of factor C'
(weight W5). This gives the unequal weights 3/5, 2/5 to the levels 1, 2 of A respectively.
In the second way, equal weights 1/2 are given to the two levels of A and consequently
unequal weights (1/6, 1/6, 1/6, 1/4, 1/4) to the five levels of C' (weight W;). The third
weight W, introduced is the one leading to the SAS type III mean squares in that case.

It is easy to deduce the mean square for B from these marginal means mpg;, mps
and from the numbers of replications 74, in the cells :

_ (mBl - m32)2
2 (1, 1)
Za’c Wac ('ralc + 7'a,2c>

For instance if W = Wy, the denominator is:

MS(B)

0.2673611111 = (1/6)2(1+ 1) + (1/6)2(0.5 + 0.5) + (1/6)2(0.5 + 0.5)+
+(1/4)2(0.5 + 0.5) + (1/4)%(0.5 + 1)

and thus

MS(B) = (23.5 — 62/3)?/0.2673611111 = 30.02597403.

The SAS type III sum of squares are defined [17] by an orthogonalisation process in
the dual of the parameter space, where the vector € of parameters is defined in the usual
way:

0 = (m,a1,az,P1,P2,ab11,0b12,0b1, b, ayiy, vz, a3, @Y1, aYa2,
afyii1, aBv112, afy113, afv121, aBY122, ABY123, ABY211, ABY212, Y221, 0457222) .

It has dimension 24 and orthogonality is with respect to the usual scalar product of R?*.
In the non uniform case, it seems difficult to give a sense to this scalar product, hence
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to the mean squares thus defined. In the example however, it can easily be seen that
the B type-IIl sum of squares is associated with the B-effect computed with the weight
W, given in table 9. Note that the means computed with the LSMEANS statement are
different : they are in fact the B-means associated with the weight W;. So there is no
coherence between sum of squares and adjusted means in that case.

In Splus under Windows, we unsuccessfully tried to get the adjusted means by
asking for them in the menu: Statistics > Analysis of variance > fixed effects. This
produced the following diagnostic: “Error in model.means.Im(x, estimable.functions =
F): computataions failed because of term (¢ %in% a):b”.

The adjusted mean squares in MINITAB [13] are those obtained with the weights
W, giving the same weight to the 2 levels of A.

The computation of sums of squares in this example relies on the definition of the
weights Wy, Wy, W associated with the three factors. It seems natural in this context
to give the same weight to the two levels of B and similarly to give equal weights to all
the levels of C' within some level of A, that is to take

Wa(1) = Wg(2) = 1/2
We(1,1) = We(1,2) = We(l,3) = 1/3
Wel(2,1) = We(2,2) = 1/2

where We(a, c) is the weight associated to the level ¢ of C' within the level a of the nesting
factor A.

For the factor A, we have introduced two natural choices :

Wa(l) = Wa(2) = 1/2
Wa(1) =3/5, Wa(2)=2/5

Let 7 be a term in the model. The weights on which the corresponding factorial
effect depends are easy to find (see Proposition 5.4). They are the weights associated to
factors which appear in a term including 7 but not in 7 itself.

In the example, the factorial effects A, AB, AC, ABC do not depend on W, since
A appears in their definition. But B is dependent on W, since A appears in the term AB
which includes B.

Another small example with four factors A, B, C, D and the hierarchies
A>B, C>D

is detailed in table 12. As in table 10, each column of mean squares correspond either to
a given system of weight, or to the output of a particular software. We have introduced
four system of weight given besides the data. The fourth one W, was selected because it
corresponds to some of the SAS type III sum of squares.

Note that the systems of weights only differ by the weights associated with A and
C. For the nested factors B and D, the standard natural weights have been selected in
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each case, that is

The model is

& ={A,C,AC,AB,CD, ACD, ABC.}

It does not include the interaction ABC D between B and D.

The rule previously mentioned shows that AC, ABC and AC'D are independent of
the weights W4, W while A, AB are depending on W and C', CD on W,. This explains
the difference between the columns of mean squares. In that example, the SAS type III
sums of squares for A, C correspond to the system of weight W, and those for AB, C'D to
the system of weight ;. As in the preceding example, the sums of squares for MINITAB

correspond to the first system W, of weights.

Design

A B C D |4

1 1 1 1 3.3

1 1 2 2 6.6

1 1 2 2 7.5

; ; f i’ 122 System of weights

5 9 1 1 89 Wa(l) Wa(2) We(1) We(2)

29 9 9 92 114 /%] 1/2 1/2 1/2 1/2

29 9 92 3 17'9 W 1/3 2/3 1/2 1/2

5 9 9 3 15:5 W3 1/3 2/3 1/3 2/3

5 3 1 1 119 Wy 045 0.55 0.45 0.55

2 3 1 1 119

2 3 2 2 149

2 3 2 2 145

2 3 2 3 199

2 3 2 3 204
factorial | ddl Mean Squares
effect Wy Wy W3 Wy | SAS t-III | MINITAB
A 1 |79.18 | 79.18 | 88.93 | 83.80 83.80 79.18
C 1 (9529 | 121.15 | 121.15 | 104.16 104.16 95.29
AC 1 0.62 0.62 0.62 0.62 0.62 0.62
A.B 1 |36.96| 36.96 | 36.11 | 37.59 36.96 36.96
C.D 1 |67.89| 77.01| 77.01| 72.03 67.89 67.89
A.C.D 1 0.64 0.64 0.64 0.64 0.64 0.64
AB.C 1 0.52 0.52 0.52 0.52 0.52 0.52

Table 12: Example with 4 factors satisfying A > B, C' > D
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3 Orthogonal design

Let T be a set of treatments. A factor A on T can be identified with a mapping ¢4 :
T — Ty giving for each treatment its corresponding level. The range 71’4 of ¢4 is the set
of levels of the factor A.

If A and B are factors on 7', we adopt the convention that A > B if A nests B, that
is if for every ¢, s in T’

¢5(t) = dp(s) = ¢a(t) = ga(s),

or equivalently if there exists a mapping ¢4p : Tp — T4 such that ¢4 = gap-¢p. If
a = ¢ap(b) is then the level of A corresponding to a given level b of B, a is said to nest b.

The factors A and B are said to be equivalent, and we write A ~ B, if A < B and
B < A. This occurs iff they induce the same partition of 7. The partition induced by a
factor A is formed by the reciprocal images ch?l(a) of its levels a in T'4.

With each factor A and corresponding mapping ¢4 from 7 into T4 is associated
the contravariant linear mapping ¢% : T4 — Tao¢4 from R4 into RT and its image
Sa = ¢ (]RTA), subspace of functions from 7' into R which are constant on each class
¢, (a). The correspondance A — S is such that A nests B (A > B) iff Sy C Si, and A
and B are equivalent iff Sy, = Sg. Moreover any two factors A and B have a supremum
AV B which is the smaller factor nesting both of them and S4y5 = S4 N Sp.

A model is a family & of factors.

Assume the experimenter wish to study n primary factors, numbered 1, ... ;n. For
each 7 in the set I = {1,...,n} of these factors, we denote by T; its set of levels and
by ¢; the corresponding mapping from 7" into 7;. The model £ generally includes the
constant factor, the primary factors and the product factors associated with the non zero
interactions.

If J C I is the subset of primary factors defining such an interaction, the associated
product factor, denoted by ¢, is defined by

¢J(t) = (¢i(t))ieJ : (12)

It coincides with the product mapping ¢; = [[,c; ¢ and is for this reason called the
product of the family of factors (¢;)ics. Its set of levels T’ is a subset of [],.; T;. We
shall generally refer to it as the factor J, though it will sometimes be more convenient
to denote it ¢; to distinguish it from the subset. For instance we shall write sometimes
¢; < ¢k rather than J < K.

When J is reduced to a single element 7, we assume that T; = T; and identify ¢;
with ¢;.

In what follows, a design is a triplet (T, W, £) where T is a set of treatments, W a
weight function on 7" and £ a model. The weight function W is a function from 7" into
the set R** of strictly positive real numbers satisfying ), W (t) = 1. It induces the
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following scalar product on R”:

(z,2) =Y W(H)z(t)z(t) - (13)

teT

Orthogonality being defined with respect to this scalar product, two factors A and B are
said to be geometrically orthogonal if the orthogonal supplementary subspaces of S4NSp
in S4 and Sp respectively are orthogonal:

SanN(SanSe)t LSpN(SanSe)*. (14)

Definition 3.1 (Orthogonal design) The design (T, W, £) is orthogonal if

i) the factors in € are surjective, non equivalent and geometrically orthogonal,
ii) & is closed under the formation of mazima.

Let (T, W,€) be an orthogonal design. For A in &, define S, as the subspace of
vectors in S, orthogonal to each subspace S for B > A. Then it is clear from their
definition that the subspaces S4, A € &, are orthogonal and that for each A, S, is the
direct sum of the subspaces Sg for B > A.

In fact the model £ is used for two things. First to define the subspace S of RT to
which the vector 7 of treatment effects must belongs: it is the sum of the S4 for A € £.
Then to provide a decomposition of 7 into meaningful components by projection onto the
orthogonal subspaces S 4:

TZZQAT, (15)

Aeé

where Q4 is the operator of orthogonal projection onto S 4.

Assume & includes the constant factor. If 7 € R” is the vector of treatment effects,
the set of linear forms {r ~ (2,7) | z € S4} is, when A is different from the constant
factor, the space of contrasts traditionally associated with the term A of the model. Note
that the weight function must be taken into account in the definition of contrasts. The
linear form (z, ) is a contrast if z is orthogonal to the constant vector 1, that is if

> W(t)z(t)=0.

teT

The weight W(S) of a subset S of T is defined as the sum of the weights of its
elements

W(s)=) W(s), (16)

SES

and the weight function W, induced by A on T4 by

Wala) =W (¢, (a)) - (17)
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Assume that ¢4 is a surjection onto T4. If x4, z4 are two vectors in R™4, let
(Ta,24) 4 = (Taca,za°pa) be the scalar product induced by the scalar product (13) of
R”. Then

(@a,za)y = Y Wala)za(a)za(a) . (18)

a€Ty

and ¢* is an isomorphism of R equipped with the scalar product (18) onto S4 equipped
with the scalar product (13).

We denote by P4 the operator of orthogonal projection from R” onto S4. Since the
canonical basis (e4)qer, of R™ is orthogonal for the scalar product (18), so is its image
(€qoPa)acr, by ¢% for the scalar product (13). Hence

Z,€q00 a=a W)z
PA:E=Z< (@ eaoba) 4 _ Zzw) (1) (t)eaom_ (19)

a€T, €q° ¢A €q° ¢A a€T4 ZqﬁA(t):a W(t)

Thus the projection P4 x is obtained by replacing for every a € T4 all the coordinates of
index t in ¢,'(a) by their weighted mean

__ Zte¢;1(a) W (t)z(t) . (20)
¢ Wa(a)
If T4 = (ZTu)acT, is the vector of these means, then
Pz = 64(Ta) (21)
Let P4 be the mapping sending = onto T 4 :
Piz=1,. (22)
The equality (21) gives the equality
Py = ¢4 0Py (23)

which shows that P, is the mapping corresponding to P4, when S, is identified to R4
through the isomorphism ¢%.

The equality (21) can be expressed in a more familiar way. We let D, D4 be the
diagonal matrices with the weights W (t), W4(a) on the diagonal and X4 be the matrix
of ¢ with respect to the canonical basis of R’ and R?. Then

Dy=X"DX,, To=D;'X' Dz, Pyz=X,D;'X,Dz. (24)

Let (T, W, &) be an orthogonal design and A a given factor of £. Each factor B
nesting A induce a factor on T}, that is the mapping ¢4 from T4 into Ts which satisfy
o = ¢pa°Ps. The family of factors thus induced by the factors B > A in £ is denoted
by €4 and called the family induced by £ on T4. The design (T4, Wa, £4) is called the
design induced on T4 by the design (T, W, &).
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With each factor ¢4 in €4 is associated the contravariant linear mapping ¢j,4 :
g Tpodpa from RTE into R4 and the subspace 4Sp = ¢%,(RT2) of RTA. It is clear
that ¢ = ¢% o d,. Consequently Sp = ¢% (4Sg). The subspaces Sz, B > A, of R"
are thus the images by ¢% of the corresponding subspaces 4Sp of R™. Since ¢% is an
isomorphism from R”4 with the scalar product (13) onto the subspace S4 with the scalar
product (18), it respects the orthogonality hence

Proposition 3.1 Let (T,W,E) be an orthogonal design and A a factor in €. Then the
design (T, Wa, E4) induced by (T, W, E) on T4 is orthogonal. The decomposition into
sums of orthogonal subspaces

R™ = @ ASp, Sa= GBEB

B>A B>A

induced by these two designs correspond to each other by the linear injective mapping ¢%.

Let @p be the operator of orthogonal projection onto Sp. When Sg is identified to R'»
through ¢%, @ is identified to the mapping ()p such that

Qp = 5°Qp - (25)
It B> A, ¢ = ¢% ¢y, and therefore
Qp = dl4°Ppa Qs (26)

which shows that ¢}, -Qp is the mapping corresponding to @5 when S4 and R™ are
identified through ¢%. From the decomposition of S4 given by proposition 3.1, it follows

that Py = ZBZA @B, hence Py = ZBZA d5a° QB and

Qa=Pa— Z¢*BA°QB- (27)

B>A

This equality can be used to compute recurrently @ 4.

The following proposition, weighted equivalent of proposition 1 of Tjur [24], gives a
practical condition of geometrical orthogonality.

Proposition 3.2 Let A, B be two factors defined on T and H = AV B. Then A and B
are geometrically orthogonal if and only if for every couple (a,b) € T4 X Ty such that a
and b are both nested into the same level h of Ty

WAXB(CL, b)WH(h) = WA(G)WB(b) .
The factor A x B is the mapping ¢t — (¢4(t), ¢p(t) from T into Tx x Tp. Consequently,
Waxg(a,b) is the sum of the weights of the elements having respectively a and b as levels

of A and B. Note that the product A x B is equivalent to AAB. If A = ¢; and B = ¢,
it is moreover equivalent to ¢ k.
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4 Reference design in the non uniform case

We now show how to define a suitable reference orthogonal design in the general case.
We let I = {1,...,n} be the set of primary factors studied by the experimenter. Any
treatment can be defined by the family ¢ = (¢;);c; of corresponding levels of these factors.
However any such vector in ], ;7; does not necessarily define a feasible treatment. If
factor 7 is compelled by the nature of things to nest another factor j, then the levels ¢;
and t; must be compatible, that is must satisfy ¢; = ¢;;(¢;). We shall assume here that
these are the only constraints to be satisfied.

More precisely, it is assumed that I is partially ordered by the nesting relation and
that for each couple 7, j in I such that ¢ > j, there is a mapping ¢;; : T; — T; giving for
each level ¢; of j the nesting level t; = ¢;;(¢;) of i. These mappings must clearly satisfy
the following two conditions:

i) if i > j >k, then ¢ix = ¢y d;x and

ii) for each i, ¢y is the identity of T;.

The feasible treatments are assumed to be all the families ¢ = (Z;)icr of [[,c; Ti
satisfying t; = ¢;;(t;) when ¢ > j. Thus the set T" of treatments of the reference design is

T = {(ti)ie]’ | ti = (ZSZ](tJ) for i, _] in I and 7 Z _7} (28)

This set is known as the projective limit of the family (7;);c; [7]. The projective limit 7',
of any subfamily (7);cs is defined similarly :

TJ = {(tz’)ieJ | tz' = (ﬁm(tj) fOI' ’i, ] in J and 7 2 ]} (29)

If J = () we adopt the convention that 7'; is a set with one element.

The factor i on T is then the projection ¢; of index 7, which sends a treatment
t = (t;)icr in T on the corresponding level ¢; in T;. For each subset J of I, the factor
J is the mapping ¢; = [, ¢i defined by (12). It coincides on T with the canonical
projection of index J:

¢J((ti)ief) = (ti)ie - (30)
It is clear that ¢; sends T into the projective limit T';.

If J C K, the factor J nests the factor K. More precisely let ¢ ;i be the projection
of index J from Tk into T); defined by

¢JK((ti)ieK> = (ti)ies - (31)
Then
b5 = Gk ° Pk - (32)
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However even if J is strictly included in K, the mappings ¢; and ¢x may be equiv-
alent. Assume indeed that for each k£ € K, there is a j € J such that j < k. Then the
coordinates on K of an element ¢t € T" are completely determinated by its coordinates on
J. Consequently ¢x ~ ¢;. As a particular case, we get

Proposition 4.1 Let J be a subset of I and K the ancestral subset generated by J, that is
the set of elements greater or equal than an element of J. Then ¢; and ¢ are equivalent
factors.

A subset J of I is said to be ancestral if
jeJ and k>j=keJ. (33)

In view of proposition 4.1, we consider from now on only factors ¢ ; associated to ancestral
subsets J of I.

For i € I, we denote by |i the set of factors in [ strictly greater than ¢ and by [i the
set, of those which are greater or equal to %

i={jellj>i}, i={jellj=i}. (34)
We let p; be the mapping from 7; into the projective limit 73; of the family (7}),-; defined
by

pi(t:) = (¢jz‘ (h’)) (35)

Je€li

If ]i is empty, Tj; is reduced to one element and p; is the constant mapping. Note that

by = pioGi - (36)

The following assumption is needed to avoid constraints other than those induced by
mesting relations and to guarantee that no primary factor reduces to the product of the
factors nesting it.

Assumption 4.1 FEach mapping p; is surjective but not injective.

The projective limit 7j; of the family (77);-; will be called the precursor set of T;. We
shall say of an element ¢; such that p;(¢;) = v that it has v as precursor. The assumption
tells that for each i, the sets p; '(v) for v in T}; are not empty and that at least one of
them has two or more elements.

For each 7 in I, let W; be a weight function from 7; into the set R™* of strictly
positive real numbers satisfying

Z Wi(t;) =1 for every v € Tj;. (37)

ti€p; *(v)
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Define then the weight W (t) of an element ¢ = (t;);c; in T as the product of the weights
of its coordinates t; :

=[] wi) . (38)

il

We will see that the set T and the weight function W provide two basic ingredients
of the searched reference orthogonal design. The third ingredient is the model whose
factors are here the projections ¢; associated to the elements of a family £ of ancestral
subsets J of I.

The geometrical orthogonality of these projections will follow from

Proposition 4.2 Let J be an ancestral subset of I. Then for each t; = (t;)ics in the
projective limit TY,

tr)=[[Wit:)

icJ

The weight function W induced by factor J is defined as in (17) by W, (t;) = W (¢, (¢s)).

Proof. The result is proved by descending recurrence on the number |J| of elements in
J. It is clearly true for J = I by the definition of W. Assume it is true for |J| > m and
consider a subset J such that |J| = m and a fixed t; = (¢;)ics in T;. Select a maximal
element j in I\ J and let K = J U {j}. It follows from (32) that

¢7'(ts) = o' (b7x(t)) = || ¢k (tx),
tKEDS e (ts)
where | | indicates a disjoint union. Thus
Wit) =W (o7 () = Y. W(eg'tx) = >, Wxltx).
tkEDT 1 (tr) tkED T (ts)

The set qﬁj}((t 7) contains all the elements tx = (¢;)icx which have the same coordinates
as ty for ¢ € J and a coordinate t; satisfying ¢;;(t;) = t; for each i > j in J (the case
j > i € J has not to be considered since J is ancestral). This condition on ¢; is equivalent
to p;(t;) = v where v = ¢y; jt; = (ti)ic);- The use of the recurrence hypothesis and of
(37) then gives

Wit = > [[wit) =][wi) Z Wi(t;) = [[Wit:) (q.ed).

tKE(Zﬁ;Il{(tJ)iEK e tJEPJ v) 1€J

|

The following corrollary follows immediately from the strict positivity of the weights

Corollary 4.1 The mapping ¢; associated to an ancestral subset J of I sends T onto
the projective limit T}.
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Thus T is the set of levels of the product factor ¢; = [],-, #:. This corollary also implies
in conjunction with the next easily proved proposition that the mappings ¢; associated
with the primary factors ¢ in I are surjective.

Proposition 4.3 The canonical projection ¢;; from Tj; into T; is an isomorphism whose
inverse is the mapping t; — (¢i(t:))jepi-

This proposition allows to identify 7j; with T; and for any j > 7 the mapping ¢(;; with
¢4i. The spaces R’ and RT can consequently be identified, but it must be noted that
the scalar product induced on the latter space by the scalar product of R” is associated
with Wy = Wj; and not with W;.

Proposition 4.4 The mapping sending an ancestral subset J on the partition induced
by ¢ is a lattice isomorphism. That s, if J and K are both ancestral, the equivalence
@5 ~ ¢ occurs if and only of J = K. If J C K, then ¢; > ¢k and

Gink ~ PNV Ok, gk ~ G5 N Pk .

Proof. Assume J \ K is not empty and select a minimal element j in it. Note that j
is also minimal in J U K, otherwise there is an element k£ in K such that k£ < j and the
ancestrality of K implies 7 € K which is in contradiction with the choice of j.

Since p; is not injective, there exists a precursor v = (%;);c); in Tj; such that p;l(v)
contains at least to distinct elements ¢; and t;. Let u = (%;);c[; be the element obtained
by adding the coordinate ¢; to v. Then u clearly belongs to the projective limit 7}; of the
family (7;);>;. Hence by corollary 4.1 there is an element ¢ = (¢;);c; having the same
coordinates as u for each 7 > j. In its projection (t;);cjux by ¢suk, substitute ¢; by
t;. The resulting element clearly belongs to Ty, hence is the projection by ¢y x of an
element s € T. Then ¢t and s have the same image by ¢x but not by ¢, which proves
that these two factors are not equivalent.

If J C K, (32) implies ¢; > ¢k.

Let K and J be arbitrary ancestral subsets and H = JN K. The mapping ¢y nests
both ¢, and ¢k, hence ¢y > ¢; V ¢x. To prove the opposite inequality, consider two
elements s, ¢t such that ¢y (s) = ¢y (t), that is such that s; = ¢; for i € H. Let u; = s; for
i € Jand u; =t; for i € K\ J. The family (u;);cjux clearly belongs to the projective
limit T;uk. By corollary 4.1, it is the projection by ¢ x of an element u of 7. Then
¢5(s) = ¢s(u) and ¢ (u) = ¢k (t) so that s and ¢ are equivalent for ¢;V ¢ . This proves

o5V ox > OH-
The proof of the other equality ¢ ;ux ~ ¢; A ¢k is immediate. a

We can now prove the geometrical orthogonality of any pair of product factors ¢,
and ¢g. Assume the levels t; in T; and tx in Tk are both nested into the same level of
o7V ok ~ djnk. Then their coordinates in J N K are equal and there are elements ¢; for
1€ JU K such that t; = (ti)iej, tg = (ti)ieK-
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Let then h = (;)icsnkx be the common nesting level of ¢; V ¢x and g = (¢;)icsuk-
Then the treatments with (¢;,%x) as level of ¢; X ¢ are the same as those with level g
of ¢ UKk, hence by proposition 4.2

W, xox (trte)Wink(h) = Wiuk(g) X Wink(h H W(t H W(t
1€JUK i€JNK
i€ ZEK

By proposition 3.2, we therefore have
Proposition 4.5 The projection ¢ for J C I are geometrically orthogonal.

We now assume that £ is a family of ancestral subsets of I which is closed for the
intersection. The corresponding family of projections ¢;, J € £, is then closed under the
formation of maxima and thus defines, together with 7" and W, an orthogonal design and
orthogonal subspaces S ;.

The next section gives a useful process to get basis of these subspaces.

5 Full rank meaningful reparametrisation for the or-
thogonal reference design

Let Q; denote the operator of orthogonal projection onto S;. The replacement of Q4 by
Qs in (15) gives

T:ZQJT. (39)

Je&

To handle this decomposition in practice, it is convenient to have for each J a basis A,
of S, so that Q5 7 is a linear combination of the vectors z in X; :

QJT:Zawx- (40)

TEXy

The parameters «, in (40), uniquely determined as linear forms of @; 7, span the space
of contrasts associated with J. Note that when the basis X; is orthogonal, they take the
following simple form :

0 = (5,7) / {2,) (41)
Together, (39) and (40) lead to the model

T:ZZO!;CQT. (42)

Je& xeXy
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which provides the expectation 7(¢) of the response in function of the parameters «, for
every feasible treatment % :

)= asax(t). (43)

Je& $€XJ

At least for the reference design T, this leads to a full rank model whose parameters
belongs to the factorial effects of interest and which is therefore very convenient to perform
an analysis of variance [11]. We now describe a simple way to get such basis X; from
which model (43) can be derived.

For our aim, the model £ is first completed so that if J and K are ancestral subsets
of I,

Je& and KCJ.=Kef& (44)

This can be done by adding every ancestral subset K included in a subset of the initial
family £. Note that this completion does not change the sum S of the space S;, that
is the subspace containing 7, and simply leads to a finer decomposition into orthogonal
subspaces S ;.

If J =0, Ty is a set with one element and S; = S is the one dimensional subspace
generated by the constant vector 1 of RT.

Consider now an arbitrary ancestral subset J # (). The process described hereafter
leads to a basis Xy of ;S; which can be immediately transformed in a basis of S; by the
isomorphism ¢7%.

Denote by m(J) a set of minimal elements in J and M (J) = J \ m(J) (later m(.J)
will be the set of all minimal elements of J). Note that M (J) is also ancestral.

Let m; = ¢um(s)s be the canonical projection from Ty onto T (s. Then T is the
disjoint union of the 75" (v) for v in Tar(s). Consequently, if F;(v) denote the subspace of
vectors in R™ with zero coordinates outside 75" (v), then

R = P Fiv) (45)

UETM(J)
It is clear that the subspaces F;(v), v € Ty, are orthogonal to each other :

€ F;(v), z€F;(tv") andv#v = <z,2>;=0 (46)

For each i € m(J), let §; be the canonical projection from M (.J) onto |3,

0 = P m(ry - (47)

Consider then a fixed element v in Tj;;). The subspace F(v) can be identified with
R7 (@) by simply dropping the 0 outside 7;'(v). Then each element t; in 7;"(v) has
the same coordinates as v on M(J) and, for each i € m(J), its coordinate ¢; of index i
can be any element in p;'(§;v). Thus 7;'(v) can be identified with the cartesian product
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HZEm( 7Py 1((5~v) and this identification induces an isomorphism between R @), hence

F;(v), and Qe R”z 8iv)
Fi(v) ~K7 O~ (R) RO (48)
iem(J)

For each i € m(J), let z; be a vector of Rei (%) When identified to an element of
Fy(v) € R, that is to a function from 7 into R, the tensor product ). ) Zi 1s
defined by

ZEm

(®icwmin #) (1) = Tliemesy 2i(ts) for ty = (t) € 77 (v).
= 0 for t; & ;' (v).

(49)

The images of this tensor product by ¢%, or by ¢%, where K is an ancestral subset
containing J, are defined quite similarly. For instance, if tx = (¢;);cx belongs to the
projective limit T,

65 (Ricmin #) () = (®remin) ) (Sax(tr))
= [Ticomen #i(ti) if v = dmk (tx) (50)
= 0 if v # dnmk (tk).

To simplify notations, it is therefore possible to omit the mapping ¢%, or ¢%, and
to consider the tensor product ®ZEm () %i a8 defined directly on 7" or T.

Let 2 = @iem(s) % and T = Q¢ (y) Ti be two such tensor products in F;(v). Then
(18), with J instead of A, gives

<ZT,z>5= Z WJ tJ) (tJ) (tJ Z WJ tJ) (t]) (tJ)

tr€Ty trers(v)

It follows from proposition 4.2 that
Wi(ts) = Wuw() [[ Wilts) fort; = (&) € ;' (v).

iem(J)

Hence

<z, z>5 = Z WM(J)(U) H I/Vi(ti)xz(t )Zz(t )

(t)elliemry pi ' (6:0) iem(J)

= Wy (v) H Z Wi(ts)xi(t:)zi(t:)

iEm(J) tiEp;I(ﬁi’l})

Let < z, 2z >; denotes the scalar product on R? '(0v) associated with the weight function
W;, that is

<,z >= Yy Wilts)x(t:)z(t:) (51)
t;
where t; varies over p; !(8;v) Then the previous equality gives
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Proposition 5.1 If z = Q¢ % and & = Q)cp(y Ti are two tensor products in Fi(v)
defined as in (49), then < x,z > ;= Wy(s)(v) HiEm(J) < Tj, % >

For each i € m(J), let Z;(8;) be a basis of R% @) Then it is well known that

ZJ(’U) = ® Zz(éz’()) y (52)

iem(J)

which is by definition the set of all tensor products @);c,,s 2 between elements z; €
Z;(8;v), is a basis of the tensor product given in (48), hence of F;(v). It follows from (45)
that the union Z; over v € Thy (s of these basis :

z,= |J 2w, (53)

V€M ()

is a basis of R7. The following proposition sums up this result and the preceding defini-
tions.

Proposition 5.2 Let J be an ancestral subset of I, m(J) a set of minimal element of J
and M(J) = J\ m(J). For each v € Tyyy and i € m(J), define d;v as the canonical
)

projection of v onto Ty;. Let Z;(0;v) be a basis of Rei (%) gnd Z;(v) be the set of tensor
products z2 = Q¢ s % defined by (49). Then the union Z; =, Z;(v) is a basis of R™7.

1€EM

It is now assumed that m(J) is the set of all minimal elements of J. Each basis
Z;(6;v) is selected so that its first element is the vector 1 having all its coordinates equal
to 1 and its other elements are orthogonal to 1 for the scalar product <, >; associated
with W; :

mi € Zi(6w), A1 = <zpl>= > Wilty)wi(t;) =0 (54)

tiep; H(6:v)

Denote by X;(d;v) the set of these other elements, that is X;(6;v) = Z;(d;v) \ 1. Let
X;(v) be the tensor product between these sets :

X)) = &) Xi(6iw) (55)

i€m(J)

and finally X; the union over v of these tensor product :

Xy = U X (v) . (56)
UETM(J)

Then

Proposition 5.3 X is a basis of ;S ;. It is orthogonal if each basis X;(6;v) is orthogonal.
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As indicated after (50), the tensor products in X; can be considered as defined directly
on T" and X; can thus be identified with its image by ¢% which provides the basis of S;
requested for decomposition (40).

Proof.

X is made up of all tensor products ®i€m( 7) % in Z; whose components z; are distinct
from 1, hence orthogonal to 1. From (46) and proposition 5.1, these tensor products are
orthogonal to the other elements of Z;, that is to the tensor products having at least one
component z; equal to 1. It remains to show that these last tensor products generates
the sum of the spaces ;S;, associated to ancestral sets L strictly included in J.

If L is such a set, there is at least one minimal element j in J not belonging to L.
Thus L C J\ {j} and consequently ;S7, C ;Sj\(j}- It is therefore enough to consider sets
L of the form L = J \ {j} for some j € m(J).

Assume therefore that L = J\ {j}. Since m(J)\ {j} is a set of minimal elements of
L, proposition 5.2 can be used. It shows that Z; = UUETM(J) Z1(v) generate Rt . Here,

Z1(v) is the set of tensor products @);c,,s)\(;; % such that z; € Z;(d;v). Such a tensor
product is defined as in (49) by

® w|t)= JI =@

iem(J)\{j} iem(J)\{j}
if t;, € ;' (v), where 7, = drm(syz, and by 0 otherwise.
The image by ¢} ; of Z, thus generate ;Sr. If t; = (¢;) and z = ®i6m(J)\{j} zi, then
$1,(2)t) =2z (bsts) = [ alts).
iem(I)\{7}
If we let z; = 1, the last product is also equal to [;c,,(s) #i(t:) and therefore
¢14(2) = ® Zi -
iem(J)

Thus the tensor product ®i€m( 7) % with z; = 1 generate ;S and the whole set of tensor
products having a component equal to 1 generates the sum of the spaces ;Sf.

If the X;(d;v) are orthogonal, the orthogonality of X; follows from (46) and propo-
sition 5.1. O

Consider now a model £ satisfying (44). Let J be the set of indices which are not
in J but belong to some set K in £ including J :

J = U x|\ (57)

K/Ke€,JCK

then
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Proposition 5.4 The space of contrasts {(z,7),x € S;} associated with the factorial
effect J only depends on the weight W; such that j € J.

Corollary 5.1 If there is no K strictly including J in &, the space of contrasts associated
with J 1s independant of the chosen weights.

The proof closely follows that given by Kobilinsky [11] in the simpler case of uniform
reference designs.

Proof. We denote by {V} the subspace generated by a family V of vectors.

Proposition 5.3 shows that ;S is the sum of the spaces {X;(v)}, hence S; the sum
of the spaces ¢% ({X;(v)}) for v € Tas(s). It is therefore sufficient to show the result when

z € ¢ ({&Xs(v)})-

From (55), we have

(X)) = @ {Xi(6w)}-

iem(J)
and {X;(d;v)} is the subspace of { Z;(d;v)} orthogonal to 1, that is the subspace of vectors
z; in R” such that
1. z;(t;) is zero when p;(t;) # d;v (i.e. when t; is not compatible with v).
2. x; is orthogonal to 1 : < z;,1 >;= Zti Wi(t)z(t;) = 0.

Thus the tensor products @,y @i With z; € {Xi(d;v)} span {X;(v)} and their images
by ¢% span ¢% ({X;(v)}). Let = be one of these images :

iem(J)

Then (50) applied with K = I gives for t = (¢;)

2(t) = Iliemyzi(t) ifv = du(t)

= 0 if v # drr(y(t) -
Hence
(z,7) = ZW(t)x(t)T(t):
_ ¥y (HWD) [T =) ) )
t€¢;/11(J)(v) i€l iem(J)



Using proposition 4.2 we get

@ry= Y, Wun@ | [] =) (HWz’(ti)>T(t)

te¢;,}m(v) iem(J) igJ
where z; is the coordinatewise product of W; and z; defined by
2i(t;) = Wi(ti)zi(ts) -

The conditions 1 and 2 on z; are equivalent to similar conditions on z; :

2. <z, 1 >= Zti Z(tz) =0.
In the second condition, the scalar product is the standard one on R%:. It does not
depend on W;. Hence the space of contrasts (z,7) for z in ¢*% ({X;(v)}) is independant
of the weights W; such that ¢ € m(J). Since this space is also generated by the ratios

(x,7) /Whs)(v), it is moreover independant of the W; for i € M(J). It remains to show
that it is also independant of W if j does not belong to any K strictly including J,

Since 7 belongs to the sum S of the spaces Sk for K € £, we have 7 = Y, 0k
where for each K, dx € Skg. We can therefore consider (x,dk) instead of (z, 7).

If K does not include J, this contrast is 0 because Sk is orthogonal to S; by
proposition 4.5. It is therefore not dependant on any W;.

Consider then a K including J. Since S; C S; C Sk, z belongs to Sk as well as
dx. There are therefore elements zx and 7, in R7% such that

T = ¢k (2k), Ok = Ok (Tk) -

In view of the remark following (18), we have

(2,7) = (Tr, Tk) ¢ = ZWK(tK)xK(tK)TK(tK)-

tx
It then follows from proposition 4.2 that W (tx) only depends of the W, for k € K.

So (x,0k) only depends on W; if J C K and j € K. Hence (x,7) only depends on
the Wj such that j € Uy, ;cx K. The result follows since we know form the first part of
the proof that (z,7) is independant of the weights W; for j € J. O

Example 5.1 . There are four primary factors A, B, C', D, with non trivial order
relations

D<A (C<A C<B.
The model is
&={0,A,B,A.B,A.D,A.B.C,A.B.D}
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A term like A.B.D denotes the subset {A, B, D}. Thus this model includes all ancestral
subsets except the whole set I = {A, B,C, D}.

The numbers of levels are

A:2, B:2, DA=1):3, DA=2):2,

C(A=1,B=1):3, C(A=1,B=2):2, C(A=2,B=1):2, C(A=2,B=2):3.

By C(A = a,B = b) we denote the subset of levels of C' such that the nesting factors
A, B in ]C have levels a, b respectively, that is the subset p;'(v) associated with the
precursor v = (a, b) of C.

The weights are given in table 13. The levels in this table are numbered sequentially

A 1 2
D 1 2 3 1 2
Al 1 2 B 11 2 wp| 1/3 1/3 /3 |1/2 1/2
Wal1/2 1/2| |Ws|1/2 1/2
Xp(A=1) Xp(A=2)
X4 Xp
T A1 1 -1 TB1 1 -1 D1 [\/3/2 —\/m 0 ] [1 —1]

wpo | [IV2 1V2 =22

A 1 1 2 2

B 1 2 1 2

C 1 2 3 1 2 1 2 1 2 3

We | 1/3 1/3 1/3 |1/2 1/2 1/2 1/2 1/3 1/3 1/3
Xo(A=1,B=1) Xe(A=2,B=1) | Xc(A=1,B =2) Xo(A=2,B=2)

| ViR v 0 ]| o] [ -] |[VaR -vm o]

zo2 | IV V2 —2/V7) (V2 vz -2V

Table 13: Weight functions W; and basis X;(v)

and, for a nested factor ¢, independantly within each subset p; 1(v) determined by the
levels of the nesting factors. In fact, the numbers on the lines beginning by C' or D are
pseudolevels that cannot be considered independantly of the levels of the nesting factors.
The true levels are therefore the combinations of pseudolevels of the factors nesting or
equal to the given factor. For instance, the true levels of D are the 5 pairs of values of
(A, D), that is (1,1), (1,2), (1,3), (2,1), (2,2). The mapping pp is then the projection
(A,D) — A on the first coordinate. Similarly, the true levels of C are the 10 triples
(1,1,1) to (2,2, 3) of values of (A, B, C') and p¢ is the projection (A, B, C) — (A, B) onto
the first two coordinates.

Table 13 also gives for each ¢ in {A, B,C, D} and each precursor v; in Tj; an or-
thonormal basis X;(v;), for the scalar product (51), of the orthogonal of 1 within Re: (%),
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Again, the notation A = a, B = b following X refers to the element v; = (a,b) in the
precursor set Tic of C, that is Xo(A = a, B = b) = X¢(a,b).

The vectors of X;(v;) appear as row vectors and are denoted sequentially z;(v;),
Zio(v;), ... or more simply Z;1, Zs, ... when the precursor v; involved is made clear by
the context. Thus for i = C', A = 2, B = 2, that is v; = (2,2), the basis is made up of

zer = [v/3/2,—/3/2,0 and aco = [1/v/2,1/v/2, ~2/v/2)

The weight W on T appears in table 14 where the marginal weights W; are also
reported. Within the table, there is one cell per element in the projective limit 7.

B 1 2
W 1/2 1/2
AW, D] Wp
c 1 2 3 |C 12
We 1/3 1/3 1/3 | W 1/2 1/2
11/3 1/36 1/36 1/36 1/24 1/24
1]1/2]2|1/3 1/36 1/36 1/36 1/24 1/24
3(1/3 1/36 1/36 1/36 1/24 1/24
C 1 2 c 1 2 3
We 1/2 1/2 We 1/3 1/3 1/3
2(1/2|1|1/2 1/16 1/16 1/24 1/24 1/24
2 |1/2 1/16 1/16 1/24 1/24 1/24

Table 14: The weight W induced on the projective limit 7" by the W;

Since & satisfies condition (44), proposition 5.3 can be used to get the vectors z
appearing in (42). These vectors are divided by their norm, given by proposition 5.1, to get
an orthonormal basis. They are numbered sequentially zg, x1, ... and given explicitely
in table 17. To simplify, the basis X;(d;v) used to define X;(v) in (55) have always
been selected to be those of table 13, though it would have been possible to select them
differently for each J € £ and v € Tyy(y).

We give in what follows some more indications on how to get the vectors z; of A,
for each J in &.

e J = (). The only associated vector is zy = 1.

e J = {A}. There is just one vector z1 = x4; defined on Ty by z4:(1) =1, £4:(2) =
—1 and therefore on T by z41(1,b,¢,d) =1, £41(2,b,¢,d) = —1.

e J={B}. As for J = {A}, there is only one vector o = zp;.

e J = {A, B}. The set of minimal elements is m(J) = {A, B} and thus M(J) = 0.
The only vector in X is 3 = £ 41®x 1 which is defined on T by (241 ® 1) (@, b, ¢, d)
z41(a)zp1(b) (it is the coordinatewise product of z; and x5).
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e J = {A,D}. Then m(J) = {D} and M(J) = {A}. The orthogonal basis X
includes two vectors xp1, 2ps for A =1, one xp; for A = 2. Since Wy(s)(v) = 1/2

for v = 1,2, their norms given by proposition 5.1 are 1/ V2 and we can take
T4 = V2xp1, x5 = V22 ps for A =1, 15 = V/2zp; for A = 2 as orthonormal basis.
The values of these vectors, which depends only on A and D, are given in table 15.

A=1 A=2
——tN—

A D \/§ T D1 \/§ T D2 \/§ T p1

1 1 3 1 0

1 2 —V3 1 0

1 3 0 —2 0

2 1 0 0 V2

2 2 0 0 -2
Ta Ts Tg

Table 15: The orthonormal basis of X4p

e J ={A B,C}. Then m(J) = {C} and M(J) = {A,B}. The norm given by
proposition 5.1 is \/Wa(s)(v) = 1/2 for each of the four couples v = (a,b). The
orthonormal basis X; includes six vectors, two for A = 1, B = 1 (z7 = 2zc¢1,
Ty = 2xcp), one for A=1, B =2 (zg = 2x¢1), one for A =2, B=1 (z19 = 2z¢1)
and finally two for A =2, B =2 (z11 = 2x¢1, T12 = 22¢2).

e J ={A B,D}. Then m(J) = {B,D} and M(J) = {A}. There are two tensor
products V2rp ® Tpi, V2251 @ Tps to consider for A = 1 and one V251 ® Zp;
for A = 2. Their values which depend only on the levels of A, B, D are given on
the rightside of table 16.

A=1 A=2 A=1 A=2
—— I - ~
A B D zp1 zpi ZTp2 tp1 | V221 ®@zp1 V2T ®Tps V2zp @zpy
1 1 1 1 V3 1 0 V3 1 0
1 1 2 1 =3 1 0 -3 1 0
11 3 1 0 -2 0 0 -2 0
1 2 1 =1 /3 1 0 —/3 -1 0
1 2 2 =1 -3 1 0 V3 -1 0
1 2 3 -1 0 -2 0 0 2 0
2 1 1 1 0 0 V2 0 0 V2
2 1 2 1 0 0 —/2 0 0 -2
2 2 1 -1 0 0 V2 0 0 -2
2 2 2 -1 0 0 -2 0 0 V2
x13 T14 T15

Table 16: The orthonormal basis of X45p
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e if J = {A,B,C, D} had also be in £, we would have also introduced four vectors
for A =1, B =1 (x5 = 22c1 ® Tp1, T17 = 2Tc2 ® Tp1, T1s8 = 2Tc1 @ Tpa,
T19 = 2Tce ® Tpa), two for A =1, B = 2 (290 = 22¢1 ® Zp1, T = 221 ® ZTpa),
one for A = 2, B = 1 (299 = 22¢1 ® zp1) and finally two for A = 2, B = 2
(223 = 2201 ® Tp1, Toa = 2Tc2 @ Tp1).

To link this with the previous notation, consider an element v = (a, b) in Ty;(;). Since
|C = {A, B} and |D = {A}, the projections 6 and dp are defined by dc(a,b) =
(a,b), 0p(a,b) = a and thus X;(a,b) = Xc(a,b) ® Xp(a). Let nc(a,b) be the
number of levels of C for A = a, B = b, that is within pj'(a,b) and similarly
np(a) the number of levels of D within p,'(a). The vectors in Xj(a,b) are the
(nc(a,b) —1)(np(a) — 1) products z¢j(a,b) ® zpk(a).

The 25 vectors xy to Zss make up an orthogonal basis of RT for the scalar product
associated with the weight W given in table 14. The 16 vectors zy to x5 associated with
the model £ are explicited in table 17, which also gives on its left the weight W and
the levels of the four factors. The arrows on the left point to a fraction considered in
section 7.

A 1 2 1 1 2 2 1 2

B —_— 1 2 1 2 —_——

—N— ——

W |ABCD A BAB Dy Dy D1 Ci CoCi1 C1 C1 C2 BDy BDy BD:
/36111111 1 1 1 /3 1 0 6 2 0 0 0 0 V3 1 0
—1/36/1 1211 1 1 1 /3 1 0 —/6 V2 0 0 0 0 V3 1 0
—1/36(11311 1 1 1 +/3 1 0 0 -2v/2 0 0 0 0 V3 1 0
—1/24/12111 1-1 -1 /3 1 0 0 0 2 0 0 0 —v3 -1 0
—1/24/122 11 1-1 -1 v/3 1 0 0 0 -2 0 0 0 —v3 -1 0
—=1/36(11121 1 1 1-+v/3 1 0 +v6 V2 0 0 0 0 —v3 1 0
/3611221 1 1 1-v3 1 0 —/6 V2 0 0 0 0 —vV3 1 0
—1/36/1132(1 1 1 1-+v/3 1 0 0 -2/2 0 0 0 0 V3 1 0
1/24/1 2121 1-1-1-/3 1 0 0 0 2 0 0 0 v3 -1 0
—1/24/1 2221 1-1-1-v3 1 0 0 0 -2 0 0 0 V3 -1 0
/361113 1 1 1 1 0 -2 0 6 2 0 0 0 0 0 -2 0
/361123 1 1 1 1 0 -2 0 —/6 2 0 0 0 0 0 -2 0
—1/36/1133 1 11 1 0 -2 0 0 -2/2 0 0 0 0 0 -2 0
1/24/1 2131 1-1-1 0 -2 0 0 0 2 0 0 0 0 2 0
—1/24/1223/1 1-1 -1 0 -2 0 0 0 -2 0 0 0 0 2 0
—1/16/2 111 1-1 1 -1 0 0 v2 0 0 0 2 0 0 0 0 V2
1/16/21211-1 1 -1 0 0 v2 0 0 0-2 0 0 0 0 V2
—1/24/2 211 1-1-1 1 0 0 V2 0 0 0 0 v6 V2 0 0-v2
—1/24/2 22 1 1-1-1 1 0 0 vV2 0 0 0 0-v6 V2 0 0—v2
—1/24[22311-1-1 1 0 0 V2 0 0 0 0 0 —2v2 0 0-v2
—1/16/2 112/ 1-1 1 -1 0 0-v2 0 0 0 2 0 0 0 0-v2
—1/16/2 122/ 1-1 1 -1 0 0-v2 0 0 0-2 0 0 0 0-v2
1/24/2 212 1-1-1 1 0 0-v2 0 0 0 0 V6 v2 0 0 V2
1/24/2 222/ 1-1-1 1 0 0—v2 0 0 0 0—6 V2 0 0 V2
—1/24(2232[1-1-1 1 0 0-v2 0 0 0 0 0 —2v2 0 0 V2
o T1 T2 X3 T4 x5 Ze6 z7 8 T9 T10 T11 12 13 ZT14 T15

Table 17: Matrix X of the linear model after reparametrisation
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6 Adjusted means

Let K be an ancestral subset of I. The mean response ug(tx) at level tx of K is defined
as the weighted mean

prclte) = Y WOTO)/Wi(tx) - (58)
t,ok (t)=tx

The replacement of 7(¢) by its expression (43) in function of the parameters «, gives

prc(t) =Y Y Aalti)es (59)

Je& xe Xy

where

Molt) = Y W(z(t)/Wi(tx) - (60)

ta¢K (t):tK

The mean responses px(tx) have been seen in (20) to be the coordinates of the
orthogonal projection Pr7 of 7 on Sk. More precisely, let Pk be the mapping such that
P = ¢% Pk, that is the mapping replacing Py when Sk is identified to R'% by ¢%. Then

pr(tx) = (PKT> (tx)

and similarly
Ao(tic) = (PKx) (tic)-

If z € X; and J ¢ K, then Pxx = 0 and consequently A\, (tx) =0. If z € X; and J C K,
then since X; C S; C Sk, x has the same coordinates for all ¢ such that ¢x(t) = tx and
consequently A;(tx) = x(t) for any such ¢. Moreover if x € X;(v) but v # dum(s)k (tk),
then z(t) = 0 for all ¢ such that ¢x(t) = tx and \;(tx) = 0. Hence

Proposition 6.1 Let x be a vector in Xy. If J ¢ K, then \,(tx) =0. IF J C K, then
Ae(tie) = x(t) for any t such that ¢x(t) = tx. In particular, \z(tx) =0 if x € X;(v) but
v F# ¢M(J)K(tK)-

Thus

uicltn) =3 3 alt)as (61)

J JJEXJ

where t is any element such that ¢x(t) = tx and J varies only among the subsets of K
in£. If z € Xy and v = @) (t), then 2(t) = 0 for all z outside A;(v). Thus the sum for
x € X can be restricted to the set Wy = X;(v) = X; (dm(nx (tx))-

When K is the whole set of primary factors (K = I), (61) coincides with model
(43). In the other cases, the form is similar but J varies only over subsets of K.
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If o, is estimable for each z € |JW;, where J € £ and J C K, the mean responses
pi (ti) associated with the levels tx € Ty are estimable and their estimations, known as
the adjusted means for factor K are obtained by adding hats on p and « in (61).

If the factorial effect of K is significant, it is usual to carry on by the examination of
these adjusted means or of some linear combinations of them. Of particular interest are
the estimates of the coordinates of Qx7, or equivalently the coordinates of Qx7, which
can be determined recurrently by formula (27). This coordinates are called the factorial
effects of factor K. The factorial effect of index ¢k is denoted by ax(tx).

Example 6.1 . Consider again the example 5.1. The treatment in 7" are identified with
the feasible quadruples (a, b, ¢, d) of levels of the four factors. We use the dot notation to
denote a weighted mean like ux(tx) : the dots replace the indices of factors which are
not in K. For instance 7(a, ., ., .) is the weighted mean pa(a) of all treatment effects
such that ¢4(t) = a and 7(a, ., ., .) the corresponding adjusted mean.

Using (27) and (22) , we find the factorial effects of table 18. The corresponding

oy = T(ey0,0,4)
as(a) = T(ayeyeye) = T(eyuyeys)
agp(b) = T(eybyeye) =T(eyeye,.)
aap(a,b) = 71(a,b,.,.) —aala) —ag(d) — oy
= T(a,by ey ) =T(@y 0y ey o) =T(eyby ey o)+ 7(ey ey 0, )
aap(a,d) = 7(a,.,.,d)—asla) —ag
= 71(a,., o, d)—7(ay ey, )
aapela,b,c) = 7(a,bye,.) —asp(a,b) — as(a) — ap(b) —ay
= 71(a,b,¢c,.)—7(a,b,.,.)
aapp(a,b,d) = T(a,lg, .,d) —aap(a,d) — aap(a,b) — as(a) — ag(b) — oy

= 71(a,b,.,d)—7(a,.,.,d) —7(a,b,.,.)+7(a,.,.,.)
Table 18: Factorial effects in example 6.1

estimates are obtained by adding hats on « and 7. The factorial effects are given in func-
tion of the mean responses which are themselves expressed in function of the parameters
o, in table 19. In that last table, the = are indexed as in the bottom of table 17, then ay,
is replaced by «; and finally, z;(t) is replaced by z;(t;) whenever x; € Xy and ¢,(t) = t,.

7 Factor efficiencies

Factor efficiencies are obtained by comparing the variances of estimation in the design
under consideration to those that would be obtained with the reference design [12]. To take
into account the difference between the numbers of units in these two designs, the variances
are first transformed to per unit variances by multiplying them by the corresponding
numbers of units.
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T( LR L] ') = Mo =

T(aa *y ') = /J‘A(a) = Qo +a1:171(a)

T(eyb,e,.) = pup(a) = g+ ax2(b)

7(a,b,.,.) = papla,b) = ap + ar1z1(a) + asza(b) + aszs(a,d)

7(a, «,+,d) = pap(a,d) = ap + a1z1(a) + asze(a,d) + aszs(a, d) + asze(a,d)
T(a,b,c,.) = papcla,b,c) = oag+aizi(a)+ azza(b) + asrs(a,b) + 227 a;zi(a,b,c)
7(a,b,.,d) = pasp(a,b,d) = oo+ aizi(a)+ aszs(b) + aszs(a,b)+

—+ Zf:4 aizi(a,d) + 2213 a;zi(a,b,d)

Table 19: Mean responses in example 6.1

The comparison is made for each factorial effect separately. If a factorial effect
includes several parameters, the comparison is between the associated per unit covariance
matrices. Their simultaneous diagonalisation leads to the principal factor efficiencies.

The computation of efficiencies is straightforward if the parametrisation is defined
by (42), where the vectors x are an orthonormal basis such as the one provided by propo-
sition 5.3. The per unit information matrix of the reference design is then the identity
matrix and the per unit associated covariance matrix is 0?I. If 023 is the corresponding
per unit covariance matrix in the design under consideration, the factor efficiencies are
immediately deduced from the blocks associated to the factorial effects on the diagonal
of X. If ¥ is the block associated with the Eh factorial effect, the corresponding factor
efficiencies are just the inverses of the eigenvalues of .

Example 7.1 . We consider the saturated design with the 16 treatments indicated by
arrows on the left of table 17, which was obtained with a D-optimal exchange algorithm.
The corresponding X matrix contains the 16 corresponding lines of the table. The per
unit information matrix is M = X’X/16 and ¥ = M~!. Table 20 gives the blocks %y
associated with the 6 factorial effects, which happen to be diagonal in that example, and
the corresponding efficiencies.

factorial effect Kk A B AB AD ABC ABD

7 \ 7 % Y Ve \
(2000 0 0]

A 0 80000 A

2 00 9 200

. Uou ou 8é0 002000 840

k 6 6 6 0 5 9 000200 03y
000030
00000 %

factorefﬁciencies%l% % [%%%] [%5%153} [%%%]

Table 20: Factor efficiencies for the arrow defined design of table 17

40



References

[1] Almena M., Noél Y., Kobilinsky A., Cepeda A. (1999). Texture of Arzia-Ulloa cheese:
I. Evaluation before ripening using a fractional design. Submitted to J.Dairy Res.

[2] Addelman S. (1962). Orthogonal main effects plans for asymmetrical factorial exper-
iments. Technometrics, 4, 21-46.

[3] Azais J.M. (1994). Analyse de variance non orthogonale. L’exemple de SAS/GLM.
Rev. Statistique Appliquée, 42, 2, 27-41.

[4] Bailey R.A. (1984). Discussion of paper by T. Tjur. Int. Statist. Rev., 52, 65-77.

[6] Bailey R.A. (1996). Orthogonal Partitions in Designed Experiments. Designs, Codes
and Cryptography, 8, 45-77.

[6] Bailey R.A., Praeger C.E., Rowley C.A., Speed T.P. (1983). Generalized wreath
products of permutation groups. Proc. London Math. Soc (3), 47, 69-82.

[7] Bourbaki N. (1977). Elements de mathématiques. Théorie des ensembles, chap. IIT :
ensemble ordonnés, cardinaux, nombres entiers. Hermann , Paris.

[8] Cliquet S., Durier C., Kobilinsky A. (1994). Principle of a fractional factorial design
for qualitative and quantitative factors: application to the production of Bradyrhi-
zobium japonicum in culture media. Agronomie, 14, 569-587.

[9] Drton M. (1999). Analyse de variance dans des situations hiérarchiques non
equirépétées. Mémoire de DEA mathématiques appliquées, Labo. Stat. Proba., Univ.
Paul Sabatier. Toulouse.

[10] Kobilinsky A. (1985). Confounding in relation to duality of finite abelian groups.
Linear Algebra Applic. 70, 321-347.

[11] Kobilinsky A. (1997). Les plans factoriels. Chap 3, p69-209. In : Plans d’expériences.
Applications a ’entreprise. Eds : J.J. Droesbeke, J.Fine, G. Saporta. TECHNIP,
Paris. 509p.

[12] Kobilinsky A. and Monod H. (1995). Juxtaposition of regular factorial designs and
the complex linear model. Scand. J. Statist 22, n° 2, 223-254.

[13] MINITAB Inc. (1994). Reference manual. US. ISBN 0 92 5636 22 3.

[14] Nelder J.A. (1977). A reformulation of linear models (with discussion). J.R. Statist.
Soc. A, 140, Part 1, 48-77.

[15] Scheffe H. (1959). The Analysis of Variance. Wiley, New York, 477p.

[16] SAS Institute, Inc. (1990). The four types of estimable functions. In SAS/STAT
User’s Guide. Reference Version 6, Fourth Edition. SAS Institute Inc., Cary, NC,
USA.

41



[17] SAS Institute, Inc. (1978). Tests of Hypotheses in Fixed-Effects Linear Models. Tech-
nical Report R-101. Cary, NC, USA.

[18] Searle S.R. (1987). Linear models for unbalanced data. Wiley, New York, 536p.

[19] Searle S.R. (1994). Analysis of variance computing package output for unbalanced
data from fixed-effects models with nested factors. The American Statistician,48, 2,
148-153.

[20] Speed T.P. and Bailey R.A. (1987). Factorial Dispersion Models. International Sta-
tistical Review, 55, 3, 261-277.

[21] Speed T.P. and Bailey R.A. (1982). on a class of association schemes derived from
lattices of equivalence relations. In : Algebraic Structures and Applications, Ed. P.
Schultz, C.E. Praeger and R.P. Sullivan. New-York : Marcel Dekker.

[22] S-Plus4 (1997). Guide to Statistics. MathSoft, Inc.,Seattle, Wahington.
[23] SPSS Inc. (1997). SPSS Advanced Statistics 7.5. SPSS Inc , Chicago.

[24] Tjur T. (1984). Analysis of variance models in orthogonal designs (with discussion).
Internat. Statist. Rev., 52, 33-65.

42



