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ABSTRACT The use of irreducible characters of a commutative group to get a
complex reparametrization is reviewed. It is shown that complex parameters can be
handled very similarly to real ones and that, for non-orthogonal designs obtained by
assembling regular fractions or block fractional designs, they simplify obtaining factor
efficiencies considerably and thus give simple clues for the construction.
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1 Introduction

Many useful designs are created by juxtaposing several subdesigns obtained by the group
morphism method described in Kobilinsky & Monod (1991). Lattices are well known
examples of such juxtapositions in which the subdesigns are the different replicates. On a
single replicate it is impossible to avoid the confounding with the blocks of some treatment
contrasts. However, as explained for instance in Kempthorne (1952), the confounding on
the whole design is only partial because the treatment effects confounded differ from one
replicate to the other.

It was shown in Kobilinsky (1990) that the use of the complex reparametrization
associated with the characters of the group of treatments (Chakravarti 1976, Bailey 1982)
leads to drastic simplifications in the analysis and construction of these designs. A prac-
tically important application was the study of a new scheme giving a useful method of
blocking for single replicate or even fractional factorial designs.

The use of parameters in the field C of complex numbers raises some questions. Is
it possible to deal with them exactly as in the real case? The answer is yes provided
these complex parameters, and the corresponding columns of the incidence matrix X are
conjugated by pairs. We recall here the main results about this kind of “complez” linear
model and apply them to a number of situations: the scheme just mentioned, semi-regular
fractional designs generalizing in a natural way the three-quarter fraction of P.W.M. John
(1962) and other block factorial symmetrical or asymmetrical designs for 2 and 3-level
factors. Explicit simple formulae for factorial efficiencies are in some cases easy to derive
and can help in choosing a good design.



2 Characters of the group of treatments

We suppose as in Kobilinsky & Monod (1991) that the treatments are the n = nq X - - - Xn;
elements of a product group 7' = (n;) X - - - X (n,) where (n;), the additive cyclic group of
order n;, is used to represent the levels of the it factor A;. If M is a common multiple
of ny, ..., ng, all these levels can be embedded into the cyclic group of order M, which
is represented either as (M), the additive group of integers modulo M, or as Rj; the
multiplicative group of M th 1o0ts of unity in C. The embedding associates with level ¢;
in (n;) either t;M/n; in (M), or exp (t; 27i/n;) in Ryr. The factors are then considered
as mappings from 7T into (M) or Ry. Thus if t = (t1,...,t5) is a treatment in 7', A;(t)
is the corresponding level of factor A; in (M) or Ry

A character ! A of T is a group morphism from 7" into the cyclic group of order M,
that is in (M) or Rys. The operation of this group induces a similar one on the characters.
Thus the sum A + B (resp. product AB) of two characters is defined by

(A+ B)(t) = A(t) + B(t) . (3)
resp. (AB)(t) = A(t)B(t) (4)

Under this operation, the set of characters is an abelian group called the dual group of T’
and denoted by T™.

Proposition 2.1 The mapping (ai,...,as) — a1 Ay +---+asA; (resp. AP --- A%) is an
isomorphism from (ny) x --- X (ns) onto T*.

(See El Mossadeq, Kobilinsky 1992 for a proof). The dual T* can therefore be identified
with the product group (n1)x---x(ns). Foreacha = (a1,...,as) inT* and t = (¢4, ...,1s)
in T, we denote by [a, t] the image of t by a1 4; + - - - + asAs, which is

M M
[a,t] = —ait; + - - - + —asts (5)
n Ng
The corresponding element in Ry is n/®% where 7 is the primitive M th o0t of unity
defined by
n = exp (2ri/M) . (6)
The morphism A = Af* - -- A% associated with a, which sends t on nl@t is denoted
by n?. Thus
n®(t) = ™ (7)

Lthe exact terminology is irreducible character. The qualifier irreducible will, however, be dropped
since all characters used in this text are irreducible.



and the mapping a — 12 is by Proposition 2.1 an isomorphism from the additive group
(ny) X --- x (ns) onto the multiplicative group of characters of 7.

Proposition 2.1 shows that any character can be generated in a unique way from
the factors Ay, ..., A,, which will therefore be called the “basic characters” of T. Each
character A can then be considered as a new factor derived from the basic ones, and it
will sometimes be referred to as the pseudofactor or factor A.

The multiplicative characters have a very important property. They form an orthog-
onal basis of CT' for the usual inner product 2 and have the same square norm n. Thus if

A and B are characters
(A4,B) =Y A(t)B(t) =0 (8)

(4,4) =3 [A®)F =n (9)

teT

3 Canonical parameters

Let 7 = (7(t))tcr be the n x 1 vector of treatment effects. The decomposition of this
vector on the orthogonal basis of characters of 7" is

=) e(A)A (10)

A

where the coefficients e(A) are

e(A) = (1, 4) /n="3_ T(t)A(t)/n (11)

teT

The characters have here their multiplicative form with values in Rj,,. The linear form
e(A) is called the canonical parameter, or factorial effect, or more simply contrast as-
sociated with A. If the context makes things clear, no distinction is made between a
character and its associated linear form. Thus e(A) is referred to as the parameter, effect
or contrast A and the dual 7™ is sometimes viewed as the group of all factorial effects. In
this terminology, a may be substituted for A = n2. We then speak of the contrast a and
write e(a) instead of e(n?).

It is known and easy to prove that the factorial effects associated with the powers
A, ..., A" ! span the n; — 1 degrees of freedom of the main effect of factor A;. Similarly
the canonical parameters associated with the (n;; —1) - - - (n;, — 1) characters A" - - -A;l,:’“,
where a;,, ..., a;, are all different from 0, span the interaction between the k factors A;,,
A

<y Ay

It is often assumed that some interactions are zero. It is equivalent to assume that
the canonical parameters spanning these interactions are zero. If this is the case, the
sum in (10) can be restricted to the subset S* of characters A associated with non-zero

canonical parameters. Note that S* is stable by conjugation since when A # A, the two

2 CT is the set of vectors (z;);cr indexed by the elements of T and with coordinates in C. Such a
vector can be identified with the mapping ¢ — .



conjugated parameters e(A) and e(A) both belong to the same interaction or main effect
and are thus simultaneously assumed or not to be zero. With these assumptions, the
domain of definition 7 of the vector of treatment effects is the subspace of vectors 7 in
R” satisfying e(A) = 0 for A ¢ S*:

T={rerT/{r,A)=0 for A¢ S} (12)

Since e (Z) = e(A) for every A in S*, the vector § = (e(A)) 4. of non-zero canonical

parameters does not vary freely in C5". It belongs to the real subspace D of vectors 3 in
c®" satisfying 3 (A) = B(A):

D={8ec’/p(A)=p(A) for Ae S} (13)

Proposition 3.1 The two real vector spaces T and D are isomorphic. The isomorphism
is the mapping T+ 0 = (e(A)) scg- defined by (10) or (11) .

The next proposition shows that the real linear forms 7 — (7,a) on 7 (a € RT) are the
linear combinations >4 A(A)e(A) with A € D.

Proposition 3.2 A linear form Y- 4 M(A)e(A) of T is real if and only if X is in D. More-
over, the mapping which to each A in D associates the real linear form > 4 A(A)e(A) of T
is a real vector space isomorphism between D and T*.

Proof. If 34 A\(A)e(A) is real for every 7 in 7, A(A) + A(A) and A(A)i — A\(A)i are real
(take e(A) =1 or e(A) =i and e(B) =0 for B # A, A). This implies that A\(4) = A(A).
It can be similarly shown that if -4 A(A)e(A) = 0 for every 7, A = 0.

It is then clear that A — > 4 A(A)e(A) = <’7', >a )\(A)A/n> is an injective linear
mapping from D into 7*. It is surjective since for a € RT, (1,a) = ¥4 (4,a) e(A) and
<Z, a> =(4,a). O

Let ¢ : U — T be the mapping of allocation of treatments to units in a particular
design and suppose that the expectation of the response y(u) on unit u depends only on
the corresponding treatment ¢(u):

E(y(u)) = 7 (¢(u)) (14)

Then the expectation of the vector of responses y = (y(u)) is 70 ¢. Using (10) it can be
expressed in function of the canonical parameters:

B(y) =Y e(4)A-6. (15)

If X is the matrix with the vectors A-¢ in columns, we thus have
E(y) = X0 with 6 € D. (16)

The parameters in # are either real or conjugated by pair, and so are the corresponding
columns of X. Conjugated parameters can be recombined to get a model with real
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parameters, as done in Kobilinsky (1985). However, as pointed out in Kobilinsky (1990)
it is better to work directly with the complex canonical parameters. The normal equations

are .
X*X0=X"y, (17)

with the conjugate transpose X* instead of X*. The classical definitions and results for the
linear model can be extended to this complex model. For instance an estimable function
can be defined as follows.

Definition 3.1 (Estimable function) A linear form on T (or on D) is estimable if it
is of the form (E(y),a) for a given a in CY. An estimable function is an estimable linear
form.

Usually we are interested in real linear forms for which ¢ € RY. But it can also be
interesting to consider complex linear forms like the canonical parameters. Since

(E(y),a) = (E(y),a)

the conjugated of a complex estimable function is also an estimable function, and so are
its real and imaginary parts. Note that conversely, a complex function whose real and
imaginary parts are both estimable is itself estimable. However, in Section 4 we shall give
an example of a canonical parameter whose real part is estimable but which is not itself
estimable.

We study more thoroughly complex models like (16) in Section 6, but first illustrate
by some examples the interest of this canonical complex reparametrization. For designs
whose construction involves abelian groups, it leads to a block diagonal matrix X*X easier
to manipulate than any normal equation matrix linked to a real parametrization.

4 The group morphism construction method

In this method, experimental units are represented by a product group U = (m;) X

- X (m,) and levels of block factors, if any, are also given by the elements of a group
V = (p1) X --- X (pg). The mappings ¢ : U — T and ¢ : U — V defining the treatment
t = ¢(u) and blocks v = ¢(u) on unit u are of the form

¢(u) = tg + du P(u) = vo+ Yu (18)

where ® : U — T, ¥ : U — V are group morphisms and tq € T, vq € V fixed elements.

Definition 4.1 (GMGD) The designs defined by (18) are called Group Morphism Gen-
erated Designs, or more briefly GMG Designs or GMGD.

If there is no block factor and if ® is injective, the design defined by (18) is also
called a regular fraction. Thus a regular fraction is a coset to 4+ Im @ of a subgroup Im &
of the group of treatments.



The expected response on unit u is supposed to be the sum of the corresponding
treatment and block effects:

E (y(u)) = 7(¢(u)) + ¢(¢(u))

The expectation of the vector y of responses on the m = my X - -+ X m, units of U is then

Ey) =70+ (o (19)
Using (10) and the similar decomposition of block effects
(=) e(B)B (20)
B
we get
B(y) = Y e(4) A+ Y e(B)Bov (21)
A B

For each u, A-¢(u) = A(to+Pu) = A(tg)AP(u), hence Ao ¢ = A(ty)A- P and similarly
Bo1) = B(vg)B-W. Thus

E(y) =) A(to)e(A)A-® + > B(vy)e(B)B- ¥ . (22)

Since A, B, ®, ¥ are morphisms, so are the composition maps A-® and B . ¥ which are
therefore characters of U. Two of them are either orthogonal or collinear. The grouping
of collinear columns then gives

E(y) =) _~(C)C (23)
C
where for each C € U*

YC) = > Alt)e(A)+ > B(vole(B). (24)

A:Ao®=C B:BoV¥=C

The above summations can be restricted to non-zero effects, that is to effects which are
not zero by hypothesis. Note that v(C) is assumed to be zero iff all effects e(A) and e(B)
appearing in (24) are assumed to be zero.

Definition 4.2 Confounded parameters. The canonical parameters e(A) and e(B)
appearing in (24) are said to be confounded or aliased with C on U. The same is said
of the corresponding characters. The set of confounded treatment parameters e(A) is also
called an alias set.

The reference to U is often implied by the context and not explicitly mentioned.

Thus, the effects (characters) of T* or V* confounded with C' € U* are those which
have C as image by the mappings ®*: A+ A-® and U*: B+ B.W. It is easy to check
that these mappings, known as the “duals” of ® and ¥ respectively, are group morphisms
from T™ and V* into U*. Therefore if we know a treatment effect A confounded with C,
the other ones can be obtained as the non-zero effects in the coset A Ker ®* (A + Ker ®*
in additive notations).



Estimable functions

The notations of section 3 are now adjusted to take the block effects into account.
Thus T is the subspace of definition of the whole vector (7%, (") of treatment and block
effects. The set S* includes all treatment and block characters associated with non-zero
canonical parameters and 6 = (e(A)) ,.g. is the corresponding vector of parameters, which
varies in the real subspace D defined by (13). The mapping (7%, (*)* — 0 defined by (10)
and (20) is a real vector space isomorphism between 7 and D. Each real linear form on
T can be written as a sum Y 4c5- A(A)e(A) with A uniquely defined in D.

The following proposition follows immediately from (23).

Proposition 4.1 The estimable functions are the functions Yo A(C)y(C) generated by
the non-zero linear forms y(C).

As a consequence an effect e(A) is estimable, and so are its real and imaginary
parts, iff it is not confounded with any other effect. Note however that, even when e(A)
is not, estimable, its real part or some other linear combination of e(A4) and e(A) can be
estimable. Indeed, let A be a four-level factor such that A.¢ = C' and suppose C' is real,
satisfying C? = 1. Then A3%.¢ = C® = C. Hence A and A = A® are confounded with C.

If they are the only non-zero effects confounded with C, v(C) = e(A) + e(A) and thus
R e(A) is estimable, but e(A) is not.

Definition 4.3 (CEF) The non-zero combinations of confounded canonical parameters
v(C) defined by (24) are called the Canonical Estimable Functions on U.

Estimation of the canonical estimable functions

The observations are assumed to be uncorrelated and of common variance o2. The
model can therefore be written

E(y) = Zv var(y) = 0’1 . (25)

The columns of the matrix Z are the characters C of U associated with non-zero canonical
estimable functions vy(C). The vector 7 of non-zero effects belongs to the subspace D, of
vectors whose coordinates of conjugated indices in U* are conjugated.

The orthogonality properties of the characters imply
Z*Z =ml . (26)

Hence the least squares estimate of v and its variance-covariance matrix are
1 o?
Yy=—2y  var(§)=—1I (27)
m m

The corresponding coordinatewise expression is
¥(C) = (y,C) /m var (§(C)) = 0*/m  cov(5(C),4(C")) =0 for C#C'  (28)
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The definition of variances and covariances for random variables with values in C is
straightforward:

cov(zy,xe) = FE [(xl - E(xl)) (xg - E(xz))] , (29)
var(z) = cov(z,z) . (30)

The covariance is an Hermitian form. Hence

cov (7(C), (") = cov (Z €(u>y(u>/m,2@(u>y(u>/m)
= Y C(u)C'(u)var (y(u)) /m* = o* (C',C) /m?

and (28) immediately follows from the orthogonality of characters. The usual matrix
calculation rules can also be used to obtain var(%), provided the transpose is replaced by
the conjugate transpose: var(y) = Z*(0?1)Z/m? = 0%I/m. Note that var(z) = var(T).
Thus if cov(z,Z) = 0, the variance of any real linear combination azx + @7 is 2|a|? var(z).
It is equal to var(z) if |a| = 1/V/2.

Representation of the dual morphism

All levels in what follows will be embedded in the same cyclic group (M). The
integer M must therefore be a common multiple of the orders of all the cyclic groups
involved, that is of n4, ..., ng, m1, ..., m, and pi, ..., p;. We let & = (¢;;) be the matrix
representing the morphism ® (see Kobilinsky & Monod 1991). If u = (uq, ..., u,)", Puis

then a s x 1 column vector with >, ¢;;u; as ;th

Z Gijuj = Z C%mj Z d)]zc

coordinate. Thus

PR
that is
Ao ® =) ¢%C; (31)
J
where (', ..., C, are the basic unit factors and
Pijm;
x - YU 32
5= 2L (32)

Hence the image A-® of the character A = a;A4; + --- 4+ a,As associated with a =
(al,...,as) s

=3 a; (¢LC1+ -+ ¢1Cr) (Z qbuaZ) Cy +- (Z ¢”az> -, (33)

is the character of U associated with (3, #3,a4,. .., >, ¢};a;). With the representation of
U* and T* provided by Proposition 2.1, the matrix of the dual of ® is therefore ®* = (¢;;).

Note that by definition of the dual, we have ®*(A)(u) = A (®(u)) for all uin U and A in
T*. Using the matrix representation, this definition becomes

YueU*,VaeT” [®*a, u] = [a, Pu] (34)



or
VueU*,VaeT" pl® aul — plaeu] (35)

where 7 is the primitive M-root of unity given by (6).

The multiplicative form of (33)
400 = c2tie) L o(tie) (36)

can also be written
n*e® = nq’*a (37)

if we use as in (7) the notations n® and 7n° for the characters of 7* and U* respectively
associated with a and c.

From (36) and the corresponding expression for B oW, one can easily deduce which
characters are confounded. A quicker way to get these results is to obtain first generators
of Ker ®* by the general technique given in El Mossadeq et al. (1985), then the whole
subgroup Ker ®* and finally for each character A the subset A+ Ker ®* of characters con-
founded with it. The corresponding coefficients A(tq) and B(vy) in (24) can be computed
simultaneously.

As an example, consider the practically important case where n; = m; and A;o¢ =
C; forv=1,...,r. That is the first r factors are defined on U by the projections on the r
coordinates. Since A;o ¢ = A;(tg)A; - @, we have, for each i < r, A;(tg)A; - ®(0) = C;(0),
hence A;(tg) = 1 and A;jo¢ = A;o® = (. For i < r the coefficients ¢7; in (31) are
therefore 0 if 7 # j and 1 if 7 = j, and the matrix ®* has the identity I, on its left.

For i > r, formula (31) written in multiplicative form gives
L
Ai 0¢ = Al(to) H Cjﬂ.
j=1

Up to multiplication by the coordinates of ty in Ry, the factors A,,4, ..., Ay are thus
defined as products of the basic factors.

It is easy to show from the above defining relations that the generators of Ker ®*
are the s — r characters

=T [ AV i=r+1,....s, (38)
7j=1
(Fi=—Ai+> ¢4, ,i=r+1,...,5 in additive form) (39)
j=1

(see Proposition (6.1) in Kobilinsky, Monod 1991) and that
Fi(to) = Ai(to) - (40)
So for each character C = Cf* --.C/r

YC) = XY App(te)r+ - A(to) e (Al AP FST - FE) (41)

S
fT+1=---a.fs



if C' is not confounded with a block character and

YC)=eB)+ Y Aalto) - A to) e (Al - AFFLY - FR) L (42)

T
fr+la---,fs

if C is confounded with the block character B and B(vg) = 1. The sum is over (s — r)-
uplets (fri1,---,fs) in (ny41) X -+ X (ns) and (fi1, ..., fr) belongs to (nqy) x -+ X (n,).

In order to lighten notations, the composition by ¢ is often omitted and the same
notation is used for basic treatment and unit characters which coincide on U. Thus in
the situation just considered, we say that the factors A; for i = r +1,..., s are defined
from the basic unit factors A, ..., A, by the rules

A; = Ai(to)ATH .. A%
M * *
(resp. AZ = ’I’I,_tOZ + ¢1iA1 —+ o4 ¢m’A1" ) .

Note that an effect A € T* is confounded with C' iff A-¢ is proportional to C'. The
coefficient of proportionality is then A(tg), and it is precisely the coefficient appearing
in the expression (24) giving v(C). This result will often be used in the examples of
Section 5.

5 Juxtaposition of GMG Designs: examples

The group morphism method gives no information at all for confounded contrasts and
maximum information for unconfounded ones. This all black or all white procedure is
often inappropriate. It is possible, however, in order to spread the loss of information
more evenly, to apply this method separately to each of the subsets of a partition of the
set U of units, confounding for instance different contrasts on the different subsets. This
general principle of construction leads to the so-called lattice designs when the subsets are
the distinct replicates. But it can be used successfully in many other circumstances. We
give first a general framework for this kind of design, then illustrate by several examples.

5.1 General framework

The set T of treatments has the same structure as previously, but the set of experimental
units U is now the disjoint union U = U;U- - -UUk of K subsets Uy, ..., Uk, each of which
is identified with a product of cyclic groups. The set V associated with the blocks can
similarly be the disjoint union of J products Vi, ..., V; of cyclic groups: V = ViU .-UV}.

The assignment of treatments and blocks is done on each Uy by the group morphism
construction method. That is the treatment t and blocks v assigned to u in Uy are

t = qﬁk(u) = tk + <I>ku vV = T/Jk(u) =V + \I’ku . (43)

Here &, is a group morphism from Uy into T and t; is a fixed element of 7. Similarly
Uy, is a group morphism from Uy into one of the subsets Vi, ..., V;, say V}, and vy is a

10



fixed element of the same V;. We denote by J the mapping giving for each k =1,..., K
the corresponding index j, so that

Im ’lﬁk C Vj(k;) . (44)

The mapping J may be the identity of K. In that case, any partition into blocks is nested
within the partition Uy, ..., Uk. It may also be a non injective mapping. Then units in
distinct subsets Uy and Uy can be assigned to the same block if J (k) = J(k').

Note that the quantities indexed by k£ may be independent of k. For instance we
may have &, = & for all k.

The model for the vector y; of observations on the kT subset Uy is
E(yk) = To (,bk —+ Cj o ¢k var(yk) = 0'21 (45)

where j = J(k) and (; is the vector of block effects on V;. Moreover the vectors yi, ...,
Yk are supposed independent, hence

Cov(yg,y;) =0 fork #1. (46)

Decomposing 7 and (; on the orthogonal basis of characters gives

E(yx) =D e(A)Acdp+ Y _e;(B)Botpy (47)
E(ye) = A(te)e(A) Ao @y + > B(vi)e;(B)Bo ¥y . (48)

The block effect e;(B) is defined by the following equality where |V;| denotes the number
of elements of V}:

¢j(B) = (¢;, B) /|Vil - (49)
Taking the scalar product with a character C of Uy in (48), we get:

E((y, C)/IU) = X Altwe() + > B(v)e(B), (50)

A:Ao dp= B:Bo U, =C
0.2
var (<yk,0>/|Uk|) = m ’ (51)
cov (s C) /UL, (e, C) IURI) = 0 itk#K or C#C"

The subsets of canonical parameters e(A), e;(B) associated in (50) with the different
characters C' of a given subset Uy are disjoints. This makes (50) a very convenient form
of the model for practical use. Of course a given parameter can occur for different values
of k, but it is generally easy to isolate disjoint equivalence classes of parameters and
corresponding subsets of linear forms (y,, C') /|Ux| such that the expectations in one subset
involve only the parameters of the corresponding class. The estimation process can then
be carried out separately for each subset and the corresponding information matrices
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are often easy to manipulate. The equivalence relation between parameters is generated
by the sets of parameters appearing together in the expectation of one linear form. Two
parameters are in the same equivalence class if there is a chain of parameters joining them
such that two consecutive ones in the chain appear together in the same expectation.

The information matrix and least squares estimates (LSE) are invariant under any
linear invertible transformation. Let indeed model (47) be written as

E(y) = X0 var(y) = 0’1 (52)

where y = (yi,...,y%)" is the vector of responses for the whole design, and let W be an
invertible matrix (with coefficients in C). Then

E(W*y) = W*X0 var(W*y) = o> W*W (53)

The information matrix and LSE computed from (53), @ = X*W(W*W)~'W*X and
0 = Q X*W(W*W)~'W*y, are clearly identical to those deduced from (52): Q = X*X,
0 =0 X*y.

In particular, taking W such that the coordinates of W*y are the linear forms on the
left of (50), we see that the information matrix and LSE deduced from (50), with weight

|Uy| inversely proportional to the variances, are the same as those deduced directly from
(47). In that case W*W is diagonal with the inverses 1/|Uy| on the diagonal.

Let z(A), z;(B) be the columns of X associated with e(A), e;(B). The elements of
the information matrix Q are the scalar products between these columns. Using (50) we
can express them as follows

((4),2(47) = 3 Ukl A@t)A'(tr) , K1 ={k/AcDp= Ao Py}

(z(A4),z;(B)) = kZK Up|A(te)B(vi), Ko ={k/J(k)=j, Ac®y = B} 651
(j(B), ;(B)) =kZ U|Bvi)B'(vi), K3 ={k/T(k) =j, BoWy = BoW;}
(z;(B),m(B)) = 0 if £ 1

Note that the summations are over the indices k£ such that the two characters involved
are confounded on Uy and which satisfy J (k) = j when one of the parameter is a block
effect e;(B).

It is sometimes judicious to use different partitions of U, or even no partition, to
compute different elements of the information matrix X*X. For instance if the design
contains r replicates of a subgroup Ty of T' and if U is identified with Ty x (r), the
assignment of treatments is defined by the morphism I' : (t,¢) — t from U = T, x (r) into
T. The columns z(A) and z(A’) are the characters AoI' and A’-T". Their scalar product
is |U| if A and A’ are confounded on Tj, 0 otherwise. In that case the partition of U can
be useful for the computation of scalar products involving a block effect but is of no use
for computation of scalar products involving only treatment effects.
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5.2 Examples for factors at two levels

Example 1 . One replicate of a 2° in 8 blocks of size 4.

We can take U = T = (2)° and ¢ to be the identity. With the group morphism
method, it is easy to show that, for any possible choice of ¥, the subgroup Im ¥* of con-
founded treatment factorial effects includes some main effects or two-factor interactions.

If we assume however that interactions of three or more factors are negligible, we
can estimate all main effects and interactions with a design built in the following manner.
The five factors are denoted A, B, C, D, E and are identified with the basic multiplicative
characters of U = T'. The set U is split into two subsets, called macroblocks, according
to the value of ABCDE. The macroblock 1, defined by ABCDFE = 1 is then split into
four blocks according to the values of ABC, BCD, while the macroblock 2, defined by
ABCDE = —1 is divided into four blocks according to the values of ABD, ACD. In the
resulting design, the main effects and some of the two-factor interactions, namely AB,
AC, BD, CD, can be estimated with factor efficiency 1 without any assumption on the
other interactions. The other two-factor interactions are estimated with efficiency 1/2 if it
is assumed that interactions between three factors or more are zero. This is a consequence
of a general result given in (7.1.2), but it is worth giving a direct detailed proof in that
simple situation.

Consider the macroblock 1 defined by ABCDE = 1. We can identify its units with
the elements of the group U; = (2)*, with A, B, C, D as basic factors. The level of E
is then defined by £ = ABCD. and the block pseudofactors F' and G by F' = ABC,
G = BCD. As indicated at the end of Section 4, these equalities are valid only on U;. To
be quite rigorous A, ..., E and F, G should be replaced in them by A-¢q, ..., E-¢; and
F oy, Gotpy where ¢1, 91 are the affine mappings defining respectively the treatment
and block on Uj.

On Uy, the four block characters 1, F', G, FG are confounded respectively with the
unit characters 1, ABC, BCD, AD. The treatment characters confounded with a given
unit character are the characters having the same literal expression and the one obtained
by multiplication by ABCDE. For instance the treatment characters confounded with
the unit character A are A and BCDEFE.

The CEF's on this macroblock are

e the sums of effects e;(1) + e(1) + e(ABCDE), e;(F) + e(ABC) + e(DE), e,(G) +
e(BCD) + e(EF), e1(FG) + e(AD) + e(BCFE) which include a block effect

e and those which do not, like e(A) + e(BCDE), e(AB) + e(CDE), etc ...
The effects indexed by 1 are defined by (49) from the 4 x 1 vector (; of block

effects in this macroblock: e1(1) = ((1,1) /4, e1(F) = (¢, F) /4, e1(G) = ((1,G) /4,
e1(FG) = (¢, FG) /4.

The above CEFs are estimated as in (28) by scalar products between the vector
1y, of responses on the macroblock and the corresponding unit character. For instance,
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e1(G)+e(BCD)+e(EF) is estimated by (y;, BCD) /16, e(A)+e(BCDE) by (y1, A) /16,
etc ... Those estimators are uncorrelated of variance o2/16.

Similarly on macroblock 2 defined by ABCDFE = —1, we have F = ABD = —CFE,
G =ACD =—-BE, FG = BC = —ADE. The CEFs are

e ¢3(1) +e(1) —e(ABCDE), e3(F) + e(ABD) — e(CE), e3(G) + e(ACD) — e(BE),
ea(FG) + e(BC) — e(ADE) which include a block effect,

e and the differences between confounded treatment effects like e(A) — e(BCDE),
e(AB) — e(CDE), etc ...

The corresponding estimators (ys, 1) /16, (y2, ABD) /16, etc ...are uncorrelated of
variance 02/16 and have no correlation with those of the first macroblock.

Now from a pair like e(A) +e(BCDE), e(A) —e(BCDE) in which there is no block
effect, we can deduce estimates of variance 02/32 of e(A4) and e(BCDFE). All factorial
effects which are never confounded with a block effect can therefore be estimated without
any increase of the variance due to the blocks, that is with efficiency 1.

From the two contrasts (y,, ABC) /16, (y2, ABC) /16 bearing information on the
three parameters e, (F), e(ABC), e(DE), no separate estimate of these parameters can
be obtained unless e(ABC) is assumed to be zero. In that case the two contrasts are
least squares estimates of e;(F) + e(DFE) and —e(DFE) respectively. The second one
estimates the interaction DFE with a variance ¢%/16. This is twice the variance o2/32
which would be obtained in a design letting this interaction be totally unconfounded, and
the corresponding efficiency is therefore 1/2.

Example 2 . Two replicates of a 2° in blocks of size 4.

If the 2° treatments can be experimented in a second replicate, it is possible, by
a suitable blocking, to estimate all factorial effects except the five factor interaction
ABCDE. The blocking process is similar to the one used for the first replicate. The
division into two macroblocks, numbered 3 and 4, is equally made according to the value
of ABCDE. To make the subsequent division into blocks, several solutions are possible,
for instance

e Solution 1. Lattice type design.

One uses the same pseudofactors as for the first replicate, but it is macroblock 4,
defined by ABCDFE = —1 which is split according to the values of ABC and BCD,
while macroblock 3 defined by ABCDE = 1 is split according to the values of ABD
and ACD. The resulting design can also be described as being made up of a first
replicate (macroblocks 1 and 4) on which blocks are defined by the values of the
three pseudofactors ABCDE, ABC, BCD, and of a second replicate (macroblocks
2 and 3) on which blocks are defined by the values of ABCDE, ABD, ACD. The
factor efficiencies are 0 for ABCDE, 1/2 for ABC, DE, BCD, AE, AD, BCE,
ABD, CE, ACD, BE, BC, ADE which are confounded with blocks in one of the
replicates, and 1 for the remaining eighteen factorial effects.
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e Solution 2. Balancing the loss of information over macroblocks.

The unit pseudofactors used to split macroblocks 3 and 4 into blocks are chosen
so that the subgroups of confounded unit characters have only 1 in common. For
instance, AB, C'D are used for macroblock 3 and A, C' for macroblock 4. The
confounded subgroups of unit and treatment characters are given in Table 1. The
only treatment characters confounded with the blocks on more than one macroblock
are 1, ABCDE, and they are in fact confounded in every macroblock. The efficiency
is 1 for unconfounded treatment effects, 2/3 for treatment effects confounded in one
of the macroblocks, and 0 for ABCDE. Let us prove for instance that the efficiency
is 2/3 for ABC and DE, confounded with F' in the first macroblock. We have

subgroup of confounded subgroup of confounded
macroblock X
unit characters treatment characters
1 (ABCDE =1) {1,ABC, BCD, AD} {k;gg;Eng’jg’BCE }
2 (ABCDE = —1) {1,ABD, ACD, BC} {}af;ggéAgg’gg’ApE }
3 (ABCDE = 1) {1,AB,CD, ABCD} {,lax’;gb%Dé%%CféE . }
1,A,C,AC,
4 (ABCDE = -1) {1,4,C,AC} {ABCDE,BC’DE,ABDE, BDE}

Table 1: Effects confounded with blocks in each macroblock of a two replicate 2°

E ((31,ABC) /16) = e (F) + e(ABC) + e(DE) = «
E ((y2, ABC) /16) = e(ABC) — e(DE) = §
E ({(y3, ABC) /16) = e(ABC) + e(DE) = v
E ((ys, ABC) /16) = ¢(ABC) — e(DE) = p

and among all contrasts of the form (yx, C') /16, these contrasts are the only ones
bearing information on these parameters. Clearly the least squares estimates of
and v and their variances are

b = ({y2, ABC) /16);—((y4,ABC’) /16) var(B):g—;
y = (ys, ABC) /16 Var@):%

Hence the least squares estimates of e(ABC), e(DE) and corresponding variances
are

R _ A+8 5 _ 3¢
é(ABC) = 5 var ((ABC)) = 56l
) _4-b 5 _ 32
é(DE) = 5 var (¢(DE)) = 564
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Comparing these variances with the variance 02/64 of an unconfounded factorial
effect, we find the announced efficiency of 2/3. It is also interesting to note that if
the four factor interactions BCDE and ABDE are assumed to be zero, the main
effects A and C are estimated with efficiency 3/4 instead of 2/3. These factor
efficiencies can also be deduced from the general results of Section 7.1.2.

e Solution 3. An intermediate design.

To avoid losing efficiency on some main effects, we can use AB, C'D to split mac-
roblock 3 as before, but again ABC' and BC'D to split macroblock 4. The efficiency
is then 1/2 for ABC, DE, BCD, AE AD, BCE as in the lattice type design, but
increases to 2/3 for the factorial effects confounded in macroblock 2 and 3. This
design thus gives a better balance for estimating interactions than the lattice type,
while keeping full efficiency on the main effects A, B, C, D.

5.3 Block design for factors at two and three levels

Example 3 . One replicate of a 3 x 3 X 3 x 2 in blocks of size 6.

Yates (1937) gives two-replicate designs for 4 factors A,B,C,D with 3, 3, 3, 2 levels
respectively, in blocks of size 6. A similar one-replicate design is given by Kempthorne
(1952) and further studied by Winer (1962). However, the results on efficiency given by
the last two authors are inaccurate because they fail to take into account the destruction
of orthogonality between treatment effects caused by the adjustment for blocks. So, it is
again worth studying one-replicate designs of this kind. We do this for a single replicate
coming from Yates’ designs, because in contrast to Kempthorne’s, the Yates’ replicates
can be obtained as disjoint unions of two designs built by the group morphism method.

The replicate studied here is the first replicate of the Z-design given in Yates’ Ta-
ble 69. It is made up of two disjoint subsets U; and U, of 3% units, which are identified
with (3)® with A, B, C as basic factors (this means that the levels of the factors A, B,
C' are precisely given by the three coordinates). The fourth two-level treatment factor D
and the two three-level block pseudofactors denoted by P, () are defined

eonlU; by: D=1,P=AB?% Q= AC?
eonlU;by: D=-1, P=jAB? Q =j?AC?

where j = exp(27i/3) is a primitive cubic root of unity in C.
We have for any couple (p,q) € (3)?
PPQY = APTIB*C% APTIBPCYM]D = APTIB*C? on U
PPQY = jPT2aAPHap? 2 APHIBWCUD = — APTIB?PC%M on U,
Therefore the CEF's including the block effect PPQ? are

v = e(APHIB*PC*M) + e(APTIB?C*D) +  e(PPQY)  on U

Yo = e(AP+‘1B2pC'2‘1) — e(Ap+qBZ;DC2qD) + jp+2qe(prq) on Us. (55)
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If j7724 = 1, that is p = q, the two effects APTIB??C?1 = A?29B%(C? and PPQ! are
confounded. Thus ABC and A?2B%C? are not estimable. On the other hand, A?2B%C%1D
is estimated in that case by (71 — 72)/2 with efficiency 1. In particular if p = ¢ = 0, this
shows that D can be estimated with efficiency 1.

If p # q, none of the three factorial effects in (55) is estimable unless one of them is
assumed to be zero. Note that in that case, APT9B?(C?? is one of the six two-factor inter-
actions AB?, A’B, AC?, A2C, BC?, B?C. If we assume that the three-factor interaction
APTIB®C2 ] is zero, we have

ip+249
ptagegy 1 N TP vy _ 1t e
e(APTIBPCH) = P e(PPQI) = e

To get the corresponding estimates, we replace 7, and 7y, by their estimates. Since ¥; and
> are uncorrelated of variance 02/27, the variance of é(APTYB*(C%) is

p+2q|2 o | o
P+ 5 _ 207

jpt2a — 12 327

var (é(Ap+qBZ;002q)) _ (

Comparing it with the variance %‘27—; for unconfounded contrasts, we get 3/4 for the corre-
sponding efficiency. The efficiency for the three-factor interaction AP*4B?*C%4D is simi-
larly found to be 1/4 if the two-factor interaction AP B*(C?? is zero. But this last result
has no interest from the practical point of view.

It is easy to check that the other parameters, which are confounded with a block
effect neither on U; nor on U,, are estimated with efficiency 1 without making any hy-
pothesis on the form of treatment effects. Table 2 sums up these results.

AB?  (3/4,0) , AB2D  (1/4,0)
A’B - , A’BD -
AC? — , AC?’D —
A2C -, A2CD —
B2C -, BXD —
BC? - , BC’D —

AB2C?  (0,0) , A?B2C?D (1,1)
ABC - , ABCD -

1 (Oi 0) Y D (]‘7]‘)

Table 2: Efficiencies for confounded treatment effects in Example 3
The 2 efficiencies in brackets correspond to the absence or presence

of the second parameter of the line in the model. The efficiencies
are 1 for all the parameters not listed in this table.

In this example conjugate contrasts such as e(AB?), e(A? B) are estimated from two
uncorrelated sets of linear forms of the responses {(y;, AB?), (y2, AB?)} and {(y;, A>B),
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(yo, A2B)}. So their estimates are uncorrelated and the variance of estimation of any
real linear combination a e(AB?) + @ e(A%B) with |a| = 1/v/?2 is equal to the variance
of estimation of e(AB?). Therefore any real linear combination of e(AB?) and e(A?B) is
estimated with the same efficiency as e(AB?), that is 3/4 if e(AB?D) = ¢(A>BD) = 0.

For a similar reason the estimates of the four canonical contrasts e(AB?), e(A?B),
e(AB), e(A?B?) spanning the interaction between A and B are uncorrelated. The variance
of estimation of any real linear combination ae(AB?) +ae(A2B) +be(AB) +be(A2B?) is
2(|a|?4/3 + |b|?)0? /54 if block effects are taken into account and 2(|a|? +|b|?)o? /54 if they
are not. The corresponding efficiency (|a|? + [b|?)/(|a|?4/3 + |b|?) varies between 3/4 and
1. These two extreme efficiencies are called the principal efficiencies for the estimation of
the interaction A X B. Principal efficiencies are defined more generally and precisely in
Section 6.

Example 4 . Two replicates of a 3 x 3 X 3 X 2 in blocks of size 6.

e Solution 1 Yates’ design.

If one can afford a second replicate, it can be constructed with Yates’ method by
exchanging levels 1 and —1 of factor D in the first replicate. The resulting design
includes four disjoint subsets Uy, Uy, Us, U, which are identified with (3)3. The
factors D, P, Q and the replicate factor denoted by R are defined from the basic
factors A, B, C by:

D=1 P=AB. Q= AC2? R= 1 ol
D=-1 P=jAB?.  Q=J2AC? -1  onl,
D=-1 P = AB? Q= AC? R=-1 on Us
D= 1  P=jAB? Q=i2AC2 R=-1  onl,

This design can be constructed more simply as the disjoint union of two subsets
U3 = Uy U Uz and Uy = U, U Uy which are identified with (3)® x (2). The block
factors P, (), R are then defined from the four basic factors A, B, C, D by

P = AB2 Q = A02 R= D on U13

P =jAB? Q =j*AC? R=-D on Uy,

The efficiencies for the confounded effects generated by AB% AC?, D are then
those given by the first number in brackets in Table 2. Note that it is not necessary
in that case to make any hypothesis on treatment effects. Unconfounded effects are
estimated with efficiency 1.

e Solution 2

Instead of confounding the same factorial effects in the two subsets U;3 and Uy, as
in Yates’ design, we can define P, (), R by

P = ABC Q:A32 R= D OHU13
P=jABC Q= A R=-D  on Uy
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Again the efficiency is 1 for any factorial effect which is confounded neither on Uy
nor on Uyy. The other effects can be dissociated into those which are confounded
on both subsets and those which are confounded only on one of them.

Any factorial effect (ABC)P D" where (p,r) € (3) x (2) is confounded in both subsets
and the corresponding CEF's are

vs = e(APBPCPD") + e(PPR")
You = e(APBPCPD") + j(—1)"e(PPR")

Hence e(APBPCPD") is estimated by (§24 — j*(—1)"%13) /(1 — j?(—1)") when (p,r) #
(0,0), with variance (20%/54)/|1 — j*(—=1)"|? and efficiency |1 — j?(—=1)"|?/4 (see
Table 3).

The factorial treatment effects confounded only on one subset are those which are

confounded either on Uz or on Uy with a block effect PPQIR"™ where (p,q,7) €
(3) x (3) x (2) and ¢ # 0. The corresponding CEFs are

73 ((ABC)?(AB?)1D") = e ((ABC)?(AB*)1D") + e(PPQIR")

13 ((ABC)PAIDT) = e((ABC)PA1D")

24 ((ABC)P(AB*)1D") = e ((ABC)?(AB?)7D")

v24 ((ABC)P AID") = e ((ABC)PAID") + (—1)"jPe(PPQIR")

Lol 2 01 3@ o
X = , X*X=|024a|, X*X)'==-|a 3 -2
100 - -
1 a 2 -2 —2a 4
01 a

The variance of estimation is then %g—z and the efficiency 2/3 for any of these factorial
treatment effects which are also listed in Table 3. Thus if we accept to reduce the
efficiency from 1 to 2/3 for the main effect of A, all interactions of 2 and 3 factors
(including ABC and A?B?C? which could not be estimated in Yates’ design) are

estimated intra-block with a minimum efficiency of 2/3.

Example 5 . DSIGN method with a non Z-linear key matrix.

Patterson (1976) uses the DSIGN method with a key matrix which does not define
a group morphism to generate a 3 X 2 x 2 in two blocks of six plots. The set U of units is
identified with (2) x (3) x (2). The unit u = (uy, ug, u3) is allocated to the block u; and
receives the treatment t = (¢, t5,t3) defined by

tl = U9, tg = U1 + U + U3 (mod 2), t3 = Us

The above rule is somewhat ambiguous, since uy = 0 and u, = 3 which are equal in (3)
are not congruent modulo 2. We will therefore suppose that us takes the values 0, 1, 2
only. The treatment is then well defined, but the above rules, which send the element
u = (0,1,0) of period 3 on the element t = (1, 1, 0) of period 6, do not define a morphism.
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p 0 1 P 0 1 p
r 0 0 0 1 1 1
q
0 1  ABC A’B*C* D  ABCD A?BC2D
efficiency 0 3/4 1 1/4
1 AB* A?C BC?  AB?D A*CD BC?D
2 A’B  B*C AC? A’BD B?CD AC?D
1 A A’BC B*C? AD A’BCD  B?C*D
9| A BC AB%C® A’D BCD ABXC?D.
efficiency 2/3

Table 3: Ezample 4, solution 2. Effects (ABC)?(AB?)4D" or
(ABC)PAID" partially confounded with blocks and their
factor efficiencies

Let A, B, C be the factors respectively associated with ¢, t5, 3 and P the factor
block. For k£ = 0,1,2 let Uy be the subset of U defined by us = k. This subset can be
identified with the group (2) x (2) with P, C as basic factors. The above rules then give

A=j1, B=(-1)*PC onU,

On Uy, the estimable linear combination of confounded parameters including a block
parameter are
(1) = e(1p) +e(1r) + j*e(A) + j*e(A?) (56)

1 (P) = e(P) + (~1)*e(BC) + (~i)"e(ABC) + (=i*)"e(A* BC) (57)

From the three contrasts 9x(1), the conjugated parameters e(A) and e(A?) can be es-
timated with efficiency 1. From the three contrasts 4, (P), e(BC) can be estimated if
e(ABC) and e(A?BC) are zero, that is if there is no three-factor interaction. In that
case, the matrix X of coefficients of e(P) and e(BC) and the corresponding matrices
X*X and (X*X)~! are

_1] X*X:l?) 1] (X*X)_l_ll 3 —1]

X = . 13 8| -1 3

—_ = =

The variance of é(BC) is %"4—2 and the efficiency Z—Z = 8/9. The other unconfounded

parameters are estimated with efficiency 1.

5.4 Semi-regular fractional designs

P.W.M. John (1962) developed the concept of a three quarter fractional factorial for 2-
level factors. Let T' = (2)* be the group of treatments, t + Ty a regular fraction, G a
subgroup of index 4 in T,. A three-quarter fractional built on G, T} is made up of three
out of the four cosets of G in t 4+ T,. The approach of John can be used more generally
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with arbitrary groups and number K of cosets. The non-orthogonal fractions of the 23"
given by Connor & Young (1961) are obtained in exactly the same manner. We give
other examples below. General rules to compute factor efficiencies when there is just one
missing coset (K = (T : G) — 1) or when there there are only K = 2 cosets are given in
Sections 7.1.1 and 7.2.

Example 6 . 2/3 of a 3%

Let A, B, C, D be the 4 three-level factors. The 1/3 fraction defined by ABCD =1
is of resolution 4. It does not allow for the estimation of two-factor interactions and can
estimate main effects only if three-factor interactions are assumed to be zero. However,
it is not necessary to experiment the whole complete factorial design (3% treatments) in
order to get resolution 5. It is enough to experiment a 2/3 fraction, for instance the one
including the two 1/3 fractions defined by ABCD =1, ABCD = j. Main effects are then
estimable with efficiency 3/4 if four-factor interactions are assumed to be zero. The same
is true for one half of the two-factor interaction contrasts. The other half is estimated
with efficiency 1 if the three-factor interactions are assumed to be zero.

The proof follows the same lines as in the previous examples. Each fraction is
identified with (3)* with A, B, C as basic factors. The CEFs associated with a unit

contrast A®BbC¢ are
9

m(A*BbC?) = Z e (A*B*C*(ABCDY')

2
1o (A°BPC) = Z j'e (A“B'C(ABCDY')

In particular those associated with A are
1(A) = e(A) + e(A’BCD) + e(B*C*D?)
Y(A) = e(A) + je(A’BCD) + j%e(B?C?D?)
It follows that if e(A?BCD) = 0, e(A) is estimated with variance (2/3)(0%/27) and

efficiency (1/2)/(2/3) = 3/4. The same is true for the conjugated contrast e(A?) and for
any other main effect by symmetry.

Similarly
1(AB) = e(AB) + €(A?’B?CD) + ¢(C*D?)
v2(AB) = e(AB) + je(A’B?CD) + j%(C?*D?)
hence e(AB) and therefore the conjugated contrast e(A%B?) are estimated with efficiency
3/4 when e(A?2B?CD) = e(ABC?D?) = 0. The same is of course true for all interaction
contrasts of the same form like AC, A2C?, BC, B?C?, etc
Finally
1 (AB?) = e(AB?) + e(A*CD) + e(BC?D?)
12(AB?*) = e(AB?) + je(A’CD) + j*e(BC*D?)
hence e(AB?) and the conjugated contrast e(A%2B) are estimated with efficiency 1 when

the three-factor interactions are zero. The same is true for all interaction contrasts of the
same form like AC?, A2C), etc ...
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Example 7 . 2/6 of a 2% x 3.

We let A, B be the two-level factors, C', D, E, F the three-level ones and select
two out of the six 1/6 fractions respectively defined by {AB = 1,CDEF = 1}, {AB =
—-1,CDEF =1}, {AB =1,CDEF =j}, {AB=-1,CDEF =j}, {AB=1,CDEF =
j’} and {AB = —1,CDEF = j*}.

Note that if the two selected fractions have the same value of CDEF', the design
is a classical 1/3 regular fraction with defining character C DEF having a resolution of 4
only. If the two selected fractions have the same value of AB, the design is included in
a resolution 2 fraction with defining character AB and does not even allow the separate

estimation of A and B.

Let us examine the case of two fractions for which neither AB nor CDEF have
the same value, for instance those defined by {AB = 1,CDEF = 1} and {AB =
—1,CDEF = j}. We can take A, C, D, E as basic factors on each fraction. The
estimable linear combinations of confounded parameters are

1 2

%1(A*C°D'E) =Y )" e (A*C°D*E*(AB)'(CDEF)")
=0 k=0
1 2
12(A"C°DE®) = 3 3" (—1)'j*e (A*C°D*E*(AB) (CDEF)*)
1=0 k=0

For each pair of conjugated parameters, it is enough to examine only one of them.
Moreover, thanks to the symmetries, we can restrict our study of main effects and two-
factor interactions to A, C, AB, AC, CD, CD?. The corresponding subsets of confounded
parameters are given in Table 4. Table 5 gives on the two first lines of each cell

=1 = AB = A = B
CDEF ABCDEF ACDEF BCDEF
C?’D?’E?F? ABC?D?E?F? | AC?’D?E?F? BC?D?E?*F?
=C ABC = AC = BC
C’DEF ABC?’DEF AC?’DEF BC?DEF
D2?E?F? ABD?E?F? AD?E?F? BD?E?F?

= CD ABCD = CD? ABCD?
C?D?EF ABC?D?EF C?EF ABC?EF
= FE2F? ABE?F? DE?F? ABDE?F?

Table 4: Example 7. Confounded parameters on the 1/6 fraction
(main effects and two-factor interactions are marked with an arrow)

the corresponding CEFs when interactions of four factors or more are supposed to be
zero. Under that hypothesis, 1, A, AB, AC can be estimated with efficiency 1, C'D
with efficiency 3/4, but C and C'D? cannot be estimated. These last two effects can be
estimated with efficiency 1 if the three-factor interactions are also assumed to be zero.
Under that latter hypothesis, all main effects and two-factor interactions are therefore
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e(l) + e(AB) e(A) + e(B)

e(l) — e(AB) e(A) — e(B)

[e(1) + e(AB)] [e(A) + e(B)]

e(C) + e(ABC) + e(D?E*F?) e(AC) + e(BO)

e(C) — e(ABC) + j’e(D?E?*F?) e(AC) — e(BC)

[e(C) + e(ABC) + je(D?E%F?)] [e(AC) + e(BC)]
e(CD) + e(E’F?) e(CD?) + €(C?EF) + e(DE*F?)
e(CD) + j%e(E?F?) e(CD?) + je(C2EF) + j%(DE*F?)
[e(CD) + je(E?F?)] [e(CD?) + j?¢(C?EF) + je(DE?F?))

Table 5: Ezample 7. Canonical estimable functions

estimable. The corresponding efficiencies are 3/4 for interactions like CD, C?D? and 1
otherwise. Thus, the design is of resolution 5.

In their list of resolution 5 fractions of the 2™3™, Connor & Young (1961) propose for
the 223 the 1/2 fraction made up of the three 1/6 fractions defined by {AB = 1, CDEF =
1}, {AB = —1,CDEF =}, {AB = 1,CDEF = j?}. The CEFs for the 54 units of the
supplementary fraction {AB = 1,CDEF = j?} are given in brackets in Table 5. It is
easy to check that all main effects and two-factor interactions can be estimated even
when three-factor interactions are not assumed to be zero. The corresponding efficiencies
are 8/9 for contrasts like AB, A, AC, 4/5 for contrasts like C' and 1 for contrasts like
CD, CD?. The three-factor interactions in Table 5 can also be estimated, but the four
confounded interactions ACD, BCD, AE*F?, BE?F? cannot be estimated from the three
corresponding CEFs. The Connor and Young fraction has therefore resolution 6 (but not
7). However in most circumstances, the resolution 5 achieved by the 1/3 fraction of the
example will be enough for practical purposes.

6 Real reparametrisation of complex linear models

As outlined in Section 3, a possible way to study a complez model like (16) is to ) recombine

each pair of conjugate parameters e(A), e(A) in @ into real parameters r(A), 7(A) through
a unitary transformation, for instance

l e ] B [ —11//{/55 1/% ] g [ e ] , (58)

(4)
or equivalently since the 2 x 2 matrix in (58) is unitary

le(A)l_ll/\/i i/ﬂ]xl:()]. (59)

@ | T 1VE -i/ve

A
B (4)

Consider a fixed factorial effect and suppose # is partitioned into the vector #; of
parameters pertaining to this effect and the vector 6y of other parameters: 6* = (6§, 6}).
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Let X be partitioned accordingly: X = (X, X1). The model (16) can be written:
E(y) = Xoby + X160, (60)
or, as function of the real parameters defined by (58):
E(y) = XoHoCo + X1 Hi1Gi (61)

where Hy and H; are the unitary matrices deduced from (59) (note that XoH, and
X H; are real) and (y, (; are the vectors of real parameters corresponding to 6y and 6,
respectively.

To get the least squares estimate of (; or #;, we introduce the operator @)y of or-
thogonal projection onto the orthogonal (Im XoHy)t of the subspace generated by the
columns of XoHy: Qo = I — XoHo(H; X XoHo) HiXg. Since Hy' = HZ, Hy can be
pulled out of the generalized inverse and therefore

Qo =T — Xo(X5Xo)" X . (62)

Incidentally, this equality shows that () is also the operator of orthogonal projection onto
the orthogonal in CY of the subspace generated by the columns of X,. Then

E(y) = XoHo&o + Qo X1 HiG (63)

where:

& = G+ (Hy X XoHy) Hy X; X1H1( (64)

In the reparametrized model (63), the two parts of the incidence matrix are orthogonal:
(XoH))'QoX1H; = 0. Hence, a least squares estimate of (; is given by:

G = (Hi X7 QoX Hy) HiX Qo y (65)

We let:
Ql - H{X{QoXlHl (66)

Q) is called the information matriz for ¢;. A non null linear function a*(; is estimable if
and only if a € Im 2y, or equivalently if there exists a b such that @ = ;0. In that case,
it is estimated by a*¢; with variance var(a*¢;) = a*Q~a o

It can be convenient, in order to compare designs of different sizes with the same
error variance o2, to divide the information matrix by the number N = |U| of units, thus
getting a per-unit information matriz Q1 /N and a per-unit variance Na‘Q)] ao?. It is easy
to check that in a complete factorial design the per-unit information matrix i 1s the identity
matrix and consequently the per-unit variance of the contrast atcl is a*a 02. Comparing
then the design under study with a complete factorial one on the basis of the per-unit
variance, we obtain the following definition of the factor efficiency eff(a) for estimating
atQ:

a‘a _
eff(a) = m if a € Im Ql, (67)

eff(a) = 0 if o ¢ Im (2.
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Thus the efficiency is by definition 0 if a®(; is not estimable. The efficiency can be greater

than 1. For instance, in a study of a three-level factor, assume that two levels only are
experimented, each on one half of the experimental units. The contrast comparing these
two levels is then estimated with efficiency 3/2. However the contrasts involving the third
level are not estimable so the design is a bad one. More generally, it can be shown that
even if the efficiency is greater than 1 for some contrast belonging to the factorial effect
studied, any suitable measure of overall efficiency for the whole factorial effect will be
smaller than 1 (see for example Kobilinsky, 1990).

Let Ay > ---> X, > 0= X1 =---= ), be the eigenvalues of 2, /N, each repeated
according to the dimension of its eigenspace (p is the dimension of ;). Let a4, ..., a, be
corresponding orthonormal eigenvectors. The contrasts a{(i, ..., a,C: are called principal
contrasts for the factorial effect generated by (; (or #;). The corresponding efficiencies,
which are precisely Ay, ..., A, are called the principal efficiencies for the factorial effect.
The words basic, or canonical have also been used in the literature to refer to these
contrasts or eigenvalues (Pearce et al. 1974, John 1987).

The following proposition shows that the principal efficiencies can be computed
directly from the complex linear model matrix X, exactly as if it were real. The nullity
of many elements in X*X may then considerably simplify calculations.

Proposition 6.1 The principal efficiencies for the factorial effect generated by 601 are the
eigenvalues of the per-unit information matriz Ay for 61, defined by: Ay = X;Q0X1/N,
where N = |U| is the total number of units and Qo the operator given in (62).

The proposition follows immediately from the relations /N = HfA1H; and HfH,; = L
From each eigenvector b of A, one can deduce an eigenvector H;b of ; /N. However,

Hbis not necessarily real. To get real eigenvectors, the following proposition can be used.

Proposition 6.2 If b is an eigenvector of Ay with eigenvalue A\, H{b and Hib are eigen-
vectors of Q1 /N with the same eigenvalue ).

Proof. (Q/N)H;b = HiAb = AH?b. Then: (Q1/N)Hib = (Q,/N) Hib = X Hib =

AH{b (since /N and ) are real). O

If H{b is not real, any vector a = aH{b+ @ H{b is a real eigenvector of {); with
eigenvalue A\. The corresponding principal contrast is: a*(; = ab*6; + ab*f;.

Estimation and tests can also be obtained directly from X. For instance, consider
a contrast b*f;. It is real iff the coordinates in b associated with conjugate parameters in
6, are conjugate (see Proposition 3.2). It is then estimable if b € Im A, and in that case,
its least squares estimate is b*6, where:

01 = (X7QoX1)" X7 Qoy - (68)

Exactly as the global information matrix, the information matrix A; for #; can be
computed directly from (50) with weights proportional to the |Uy|. This is easily deduced
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from the matricial form (53) of (50) which becomes

E(W*y) = W*Xo0 + W* X6, var(W*y) = o*W*W (69)

The matrix W*W is diagonal with the 1/|Ug| on the diagonal. Since when the |Uy|
are not equal it is not proportional to the identity, the metric (W*W)~! must be intro-
duced in the computation. Orthogonality is with respect to this metric. The orthogonal
projector @y onto (Im W*X,)+ and the per-unit information matrix A; for §; are then

Qo =1 W*Xo(XgW (W*W)™'W*Xo)~ XgW (W*W)~! (70)

Ay = XTW(W*W)1QoW* X, /N (71)

Using the equality (W*W)~! = W='W*"! it is easy to check that this A; deduced from
(50) is the same as the one given in proposition 6.1.

In the particular case where all Uy, have the same number n of units, W*W = I/n.
If we let Zy = W*X,, Z; = W*X, the following familiar expressions are obtained:

Qo =1—Zy(Z520)" Zg (72)

n *
AI = NZIQOZl (73)

7 Juxtaposition of GMG Designs: some general for-
mulae

The framework of Section 5.1 is now restricted by the following assumptions.

e All the groups U are isomorphic to the same group G.

e &, is equal to a morphism ® independent of .

e If there are blocks, J (k) = k and v, = 0 for each k (except in the special case of
two blocks in Example 8 ).

Thus the treatment t on unit u € Uy, is
¢k(u) = du + tr . (74)

If there are blocks, the unit u € Uy belongs to the blocks defined by the coordinates of
Vru € Vi. Any partition into blocks is therefore nested within the partition into the Uy.

The set of experimented treatments is 7 = Ui, (t; + Im ®). The smallest regular
fraction containing it is t 4+ 7, where t is any element of 7 and T} the subgroup generated

by 7 —t.

It is convenient to decompose ® in a canonical way: ® = A.®,, where ®q is the
morphism from G into 7j coinciding with ® and A : Ty, — T the canonical injection.
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The CEFs for the regular fraction t+ 7, are the linear combinations y(B) associated
with the characters B of T defined by

vB)= 3 Alt)e(A4). (75)
A:AoA=B
It is clear that any estimable function for the subfraction 7 of t+7j is a linear combination
of the v(B). More precisely, if there are no block effects, (50) gives

E((ye, CY/IG) = 3. Alte)e(4) = . > Alte)e(4)

A:Aod=C B:Bo®y=C A:AoA=B

Since ty — t € Ty, A(ty —t) = A(A(ty —t)) = B(ty, — t) whenever Ao A = B. So

Y. Altee(4) = > Alty —t)A(t)e(4) = B(ty — t)v(B)

A:AoA=B A:AoA=B

and model (50) becomes

E((w, CY/IGI) = 3. Bltx—t)(B) (76)

B:Bo®y=C

where the sum is over characters B confounded with C' and such that v(B) is not zero by
hypothesis.

When there are blocks, this equality remains valid if C' is not confounded with blocks
on Uy, that is if C' ¢ Im ¥}, If on the contrary C' is confounded, there is a character D of
Vi such that C' = Do W, and, since ¥, is surjective, this character is unique. The factorial
block effect e, (D) must then be added to the expectation in (76) which is replaced by

Bl O)/I6)= 5 Blte = t)7(8) + (D). ()

The block parameters appearing in distinct equations in (77) are distinct. The con-
trasts (yx , C) /|G| such that C is confounded with blocks are therefore useless to estimate
the treatment parameters v(B) and attention can be restricted to the equalities (76) where
C is not confounded with blocks. Moreover since the subsets ®;~'(C) associated with the
different unit characters C' are disjoint, each subset of equalities in (76) associated with
a given C' can be handled separately.

So we now consider a given unit character C' and the indices £ such that C' is not
confounded with block effects on Uy. For simplicity, these indices are assumed to be the
L first ones. The corresponding model can be written as

2
E(z)=20  var(z) = é—‘ I. (78)
The vectors z, 6 and the matrix Z are
(41, C) /|G| v(B1) Bi(t: — t) By(t1 —t)
z= : 0 = : 7 = : . :
(yr, C) /|G 7(Bp) Bi(tr —t) By(tp —t)
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where By, ..., B, are the characters appearing on the right hand side of (76).

The information matrix for 0 is Z*Z = (z;;), with

L
k=1

The equalities B;o®y = C, B;j-®, = C imply (B;B;)>®; = 1. Hence there is exactly

one character A;; of Tp/Im @, such that

FZ'B]' = Aij ° H (80)

where II : Ty — T/ Im @, is the quotient canonical mapping and

L

zig = Ay(TI(t, — t)) . (81)

k=1

Srivastava & Throop (1990) study conditions on the family (II(t; —t)); under which
there is orthogonality, that is z;; = 0 for 7 # j. But their examples of resolution 5 fractions,
a 2571 and a 3/4 of a 2% are not very interesting from the practical point of view since
regular resolution 5 fractions with an equal or even lower number of units exist for these
cases.

In the non-orthogonal case, if we are interested only in the contrasts generated by
some of the parameters, say the last p—q ones, we write the expectation of z in partitioned
form:

E(Z) = Z000 -+ 2191 (82)
where 6y = (v(B1),...,7(By))", 61 = (v(Bgt1),---,7(Bp))t and Z = (Zy, Zy) is the
corresponding partition of Z. Then if Qo = I — Zy(Z5Zy)~ Z§, the per-unit information
matrix for #; obtained from the equality (73) is

Ay = ZiQuZ /K = (2721 — Z{ 20(Z; Z0) 75 71) /K . (83)
In practice the parameters of interest are the effects A in 7. To be estimable, such
an effect must be the only non-zero one in the corresponding sum (75), that is in its coset

AKer A*. The number p is the number of cosets of Ker A* in A Ker ®* including non-zero
effects. These cosets are obtained by multiplying by A the cosets of Ker A* in Ker ®*.

We now consider some more special cases.

7.1 Estimation with one missing coset

We go on studying the treatment effects confounded with a given character C' itself un-
confounded with blocks on the first L isomorphic groups Uy, ..., Uy.

Assumption 7.1 Fach coset of In® in t + Ty appears R times (R > 1) in the list
ti+Im®, ..., t, + Im P except one which appears only R — 1 times.
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FR=1,t1+Im®, ..., t; + Im P are thus all but one of the distinct cosets of Im ® in
t+ 1.

Let to+Im ® be the coset appearing only R— 1 times. Then the sequence II(tq —t),
..., [I(tx — t) contains R times each element of 7/ Im ® and

i Ayt — t)) = R (A, 1) .

The last scalar product is 0 if A;; # 1, that isif ¢ # j and L + 1 if ¢ = j. But

L

Zij = 1; Ay (TI(t — t)) — Ay (TI(to — t))

and so, if d;; is the Kronecker symbol,

Let now
ho = (Bi(tg — t),..., By(to — t)) hy = (Bgt1(to — t), ..., By(tg — t)) . (85)
It follows from (84) that
ZyZy = (L+1)I—hihy  ZiZy=—hihy ZiZy=(L+1)I—hih;. (86)
Since p < |Ker ®| = (L + 1)/R, we have ¢ < L + 1. Then Z;Z, is invertible and

1 hyh
ZiZo)' = I o=
(Z5Z0) L+1[_%L+1—q] (87)

Replacing (Z5Zy)~, ZiZo, ZiZ1 in (83) by the above values and using the equality

hohy = g gives
Al:L+1<I hthy ) .

K CL+1-— q
Then
. L+1L+1-p
Ahi = T T
L+1
Ah* = %h* for any (p — ¢) x 1 vector h* orthogonal to A}.

The corresponding eigenvalues are:

L+1L+1-—
; I 1 1 _z with multiplicity 1

L+1

% with multiplicity p —q — 1

These results are summed up in the following proposition

29



P 1
44 —1p
35—0p

1 0

efficiency

©oloo| o
win| e

Table 6: Efficiencies in John’s three-quarter replicate.

Proposition 7.1 Let v(By), ..., v(Bp) be the non-zero CEFs of the regular fraction
t + Ty which are confounded by ® with the character C' of G. Let L be the number of
indices k € {1,..., K} such that C is not confounded with blocks on Uy. Assume that,
among the corresponding subsets ty + Im ® of treatments, each coset of Im® in t + T
appears R times except one which appears R — 1 times.

Then the principal efficiencies to estimate (y(Bgt1),--.,V(By)) are (L +1)/K with
multiplicity p —q — 1 and [(L+1)/K][(L +1—p)/(L + 1 — q)] with multiplicity 1.

7.1.1 K/(K +1) fraction of a regular fraction

In thiscase R=1, L = K and t; + Im®, ..., tx + Im ® are all but one of the distinct
cosets of Im ® in t + 7;. Block factorial effects if any must only be confounded with the
v(B) which are not to be estimated. The principal efficiencies given in proposition 7.1
become (K + 1)/K (multiplicity p — ¢ — 1) and [(K + 1)/K]|[(K +1—p)/(K + 1 — q)]
(multiplicity 1).

For a 2/3 fraction and p = 2, ¢ = 1, the proposition thus gives the efficiency 3/4, in
agreement with the result of Example 6.

The proposition can also be used to get efficiencies in John’s three-quarter replicates.
Lists of these useful 3(2°~") fractions, first studied by P.W.M. John (1962, 1971), can be
found in Diamond (1981) and McLean & Anderson (1984). For them T = (2)*, Tj is a
resolution 4 or 5 subgroup of size 27" and G a subgroup of index 4 (size 2°7") of Ty.
Thus K = 3 and p— g = 1. The factor efficiency for a single canonical estimable function
v(B) confounded with p — 1 other ones on G depends only on p and is given in Table 6.
A CEF on Tj is therefore also estimable after omitting a coset of G iff there is at least
one zero CEF among the four confounded with it on G.

Example 8 . For instance let Ty be the subgroup of (2)® of resolution 4 defined by
E = ABC, F = ABD, and G be the subgroup of Tj defined by C = A, D = A. Then
the CEF confounded with 1 on Ty is v(1) = e(1) + ¢(ABCE) + ¢(ABDF) + e(CDEF)
and the four CEFs on G are

6(1) = v(1) + y(AC) + y(AD) + ~(CD)

6(A) = v(A) + (C) + (D) + ~(ACD)
§(B) = v(B) +v(ABC)+~v(ABD) + ~(BCD)
§(AB) =v(AB) + v(BC) + ~(BD) +~v(ABCD)
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2 blocks : J(k)=1 v, = AB
3 blocks : Jk)=k U= 1
6 blocks : Jk) =k U, = AB

Table 7: Three way of splitting into blocks a 3(25~%) of resolution 4

If it is assumed that interactions between 3 factors or more are zero, we have

e v(4), e(B)=1(B), e(C) =~(0),
e(D) =v(D), e(E)=~(ABC), e(F)=~(ABD),
and moreover

+(ACD) = e(ACD)+ e(BDE)+ e(BCF) + e(AEF) = 0
v(BCD) = e(BCD)+ e(ADE) +e(ACF)+e(BEF) = 0

Hence the 6 main effects are estimable with efficiency 2/3 in any design including 3 among
the 4 cosets of G in some coset of Ty. Any such 3(2°%) fraction is therefore of resolution 4.

Moreover main effects appear only in §(A) and §(B). It is therefore possible to divide
the experiment into 2, 3 or 6 blocks without losing the resolution 4. The corresponding
definition of 7 and Wy are given in Table 7.

When there are no blocks, the two contrasts between the three means (yx, 1) /4 and
the three contrasts (yx, AB) /4 can be used to get an over-estimate of 0. This estimate
may be swollen by the presence of two-factor interactions, but this does not really matter
if the aim of the experiment is to detect only main effects which are significantly greater
than interactions.

With 6 blocks, these 5 contrasts whose expectation include 5 different block effects
cannot be used to get an error variance. With 3 blocks, only the last three ones can be
used. With 2 blocks, the expectations of the three contrasts (yx, 1) /4 include the same
block effect e;(1) with coefficient 1. Thus e;(1) disappears from the expectation of the
two orthonormal contrasts

(y1,1) — (Y2, 1)
(y1,1) + (y2, 1) — 2 (y3, 1)

which can therefore be used to get an error variance biased only by interaction terms.
Similarly two other independent contrasts whose expectations include only interactions
can be deduced from the three contrasts (y;, AB) /4.

7.1.2 Macroblock designs

When the experiments must be blocked, the sets Uj, ..., Ux provide a partition into
macroblocks which can be further divided by means of the morphisms ¥;. We assume
here that the whole design is made up of R replicates of the regular fraction T; (each
divided into K/ R macroblocks) and that the subgroups Im ¥} of G have only 1 as common
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character. Therefore a character C' # 1 of G is confounded with blocks in at most one
macroblock and proposition 7.1 applies with L = K — 1 when C' is confounded.

The efficiency for a parameter y(B) is 0 if Bo®y = 1, is 1 if C = B ®, is never
confounded with blocks. If C' is confounded with blocks on one Uy, (C' € Im¥j), the
principal efficiencies for any set of p — ¢ out of the p non-zero parameters v(B;), ...,
v(B,) confounded with C' on G are 1 with multiplicity p — ¢ — 1 and (K — p)/(K — q)
with multiplicity 1.

In Example 1, K = 2. If the three-factor interactions are zero, p = 1, ¢ = 0
and proposition 7.1 directly gives the efficiency of 1/2 for the 6 two-factor interactions
confounded with blocks in one of the macroblocks. In Example 2, solution 2, K = 4.
If no hypothesis is made on interactions between three or more factors, p = 2, ¢ = 1.
Proposition 7.1 then gives the efficiency 2/3 for the factorial effects confounded with
blocks in one macroblock (Table 1). If interactions of three factors or more are zero,
p =1, ¢ =0 and the efficiency 3/4 found then for these effects can also be deduced from
the proposition.

We give another example with factors at 3 levels, then show how to use a three-
quarter replicate to get an efficient macroblock design.

Example 9 . 3° in 27 blocks of size 9.

The treatments are divided into three macroblocks according to the value of ABCDE.
Each macroblock is then identified with G = (3)* with A, B, C, D as basic factors. The
subsequent divisions into 9 blocks of the macroblocks use the following pairs of characters
of G:

ACD, BC?D  for the macroblock ABCDE =1,
ACD?, BCD  for the macroblock ABCDE =j,
AC?D, BC?D? for the macroblock ABCDE = j2.

It is easy to check that the subgroups generated by these pairs of characters have
only 1 in common. Note that to find those subgroups , G was identified with the vectorial
space F¢ over the Galois field Fy of order 9. The subgroups were selected as three of the
10 = (81 —1)/(9 — 1) one-dimensional subspaces.

Table 8 gives the factorial effects confounded together and with a block effect in the
first macroblock. It contains no main effect and only two 2-factor interactions BE, B?E?.
A similar result holds for the two other macroblocks. The other confounded 2-factor
interactions are AE, A?E? in macroblock 2 and DE, D?E? in macroblock 3. The factor
efficiency is 0 for the factorial effects in Ker ®* = {1, ABCDE, A?B>C*D?FE?}. Tt is 1 for
main effects and more generally for all factorial effects which are never confounded with
blocks.

Consider now one of the 2-factor interactions confounded with blocks in one mac-
roblock, say BE. It is also confounded on each macroblock with AB2C' DE? and A2C?D?.
If the 5-factor interactions are assumed to be 0, proposition 7.1 applies with K = L+1 = 3,
p =2, g =1 and the efficiency is found to be 1/2. If 3-factor interactions are also assumed
to be 0, then p =1, ¢ = 0 and the efficiency becomes 2/3. The same result holds for the
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1 ABCDE A’B?C?D?E?
ACD A’BC?’D?’E B’FE?
A%C?D? BFE AB?CDE?
BC?D  AB’D’E A*’CE?
ABD?* A’B°CE C?DE?
A*BC  B?C’DE AD?FE?

BCD? AC’E A’BDE?
AB?C? A’DE BCD?FE?
A’B’D  CD’E ABC?E*

Table 8: Treatment effects confounded with a block effect in macroblock 1.

five other 2-factor interactions confounded with blocks in one macroblock.

Any 3-factor interaction with equal exponents like AC'D is confounded with one
2-factor interaction and one 5-factor interaction. If it is confounded with blocks in a
macroblock, it is therefore estimable with efficiency 1/2 if 5-factor interactions are assumed
to be 0. Finally each 3-factor interaction with unequal exponents like BC?D is confounded
with another 3-factor interaction and a 4-factor interaction. If it is confounded with blocks
in a macroblock, it is estimable with efficiency 1/2 only if 4-factor interactions are also
assumed to be 0.

Example 10 . 22 in 32 blocks of size 8.

The tables of 3(2°~") fractions can be used to divide the corresponding regular
fractions T, (isomorphic to 2°7"2) into “small” blocks, instead of reducing the size of
the design by a factor 3/4. The four quarters are taken as macroblocks and divided as
indicated at the beginning of the section. Any effect which would be estimable in the
3/4 fraction is also estimable in the block design since it is confounded in at most one
macroblock and thus estimable from at least three macroblocks.

As an example, consider the 3/64 fraction of 2'? factorial given in McLean & An-
derson (1984, appendix 4, Table 9). The 12 factors are represented by the first letters
of the alphabet, excluding I which is reserved by McLean and Anderson for the identity,
but keeping G though it is also used to denote the group to which each macroblock is
isomorphic. The regular fraction 7} is defined by

J=—-CFGH, K=-ACEG, L=-BDEFGH, M =-CDEGH.

It is divided into 4 macroblocks using the values of the characters ABC DG, CDEFH.
Each macroblock is identified with G = (2)% with A, B, C, D, E, F as basic factors. The
divisions into 23 blocks of the macroblocks use the following sets of characters of G:

ADE, BEF, C(CD  for the macroblock (ABCDG,CDEFH)=(
ADF, BDEF, CDE for the macroblock (ABCDG,CDEFH) = (
AEF, BD, CE  for the macroblock (ABCDG,CDEFH) = (
ADEF, BDE, CEF for the macroblock (ABCDG,CDEFH)=(
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1 ABCDG CDEFH ABEFGH

1 ABCDG CDEFH ABEFGH
CDEGHM ABEHM FGM ABCDFM
BDEFGHL ACEFHL BCGL ADL
BCFLM ADFGLM BDEHLM ACEGHLM
ACEGK BDEK ADFGHK BCFHK
ADHKM BCGHKM ACEFKM BDEFGKM
ABCDFHKL |FGHKL ABEKL CDEGKL
ABEFGKLM |CDEFKLM ABCDGHKLM |HKLM
CFGHJ ABDFHJ DEGJ ABCEJ
DEFJM ABCEFGJM |CHJM ABDGHJM
BCDEJL AEGJL BFHJL ACDFGHJL
BGHJLM ACDHJLM BCDEFGJLM | AEFJLM
AEFHJK BCDEFGHJK | ACDJK BGJK
ACDFGJKM |BFJKM AEGHJKM BCDEHJKM
ABDGJKL CJKL ABCEFGHJKL | DEFHJKL
ABCEHJKLM | DEGHJKLM | ABDFJKLM CFGJKLM

Table 9: Ezample 10. Characters confounded with 1 on G

The subgroups generated by these couples have only 1 in common. They can be obtained
as 4 out of the 9 one-dimensional subspaces of F?, where Fy is the field of polynomials
modulo 1+ 22 + 73, and treatment (¢, 1y, t3, 4,15, 16) is identified with (¢; + tox + 312,
ty + tsT + tex?).

Table 9 gives the 64 treatment effects confounded with 1 on G. Their arrangement in
columns is such that each column is the subset A*~'(£) of treatment characters confounded
on Ty with a character £ € Ker ®;. This character £ is given on top of the column. In
particular the first column gives the treatments characters confounded with 1 on Tj.
Except 1, all of them have at least five letters and 7 has therefore resolution 5. If
interactions of three or more factors are zero, the non-zero CEFs of Tj are precisely the
main effects and two-factor interactions.

Assume that all interactions involving 3 factors or more are 0. The non-zero effect
confounded on G with a given main effect can only come from the multiplication by 1 and
by the two 3-letter effects doubly underlined in Table 9. Since these two 3-letter effects
have no letter in common, a main effect is therefore confounded with at most p = 2 non-
zero CEF's of Ty (including itself) and is estimated with minimum efficiency (4 — 2)/(4 —
1) = 2/3. Similarly the non-zero effects confounded with a two-factor interaction can come
only from multiplication by 1 and by the 9 underlined 3 or 4-letter interactions. Since 7
is of resolution 5, there is at most one such non-zero effect for each column of the table
and the examination of the intersections between underlined effects in different columns
shows that a two-factor interaction can be confounded at most with p = 3 characters of
Ty hence estimated with minimum efficiency 1/2.

The non-zero effects confounded with blocks on each macroblock are given in Ta-
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macroblockl
character of G ADE | BEF ABDF CD ACE BCDEF | ABCF
treatment character || EL CM, HJ CD GK, BJ BH DM
efficiency 3/4 2/3 3/4 2/3 3/4 3/4
macroblock?2
character of G ADF | BDEF ABE CDE ACEF BCF ABCD
treatment character| FL FK |HM, KL ,CJ| FH | HL, KM |LM,HK| G, FM
efficiency 3/4 3/4 1/2 3/4 2/3 2/3 2/3
macroblock3
character of G AEF BD ABDEF CE ACF BCDE |ABCDF
treatment character BD, EK CE CK,JL | FG, M
efficiency 2/3 3/4 2/3 2/3
macroblock4
character of G ADEF| BDE ABF CEF ACD BCDF | ABCE
treatment character K DH |BG, CL, JK| AM J
efficiency 3/4 3/4 1/2 3/4 3/4

Table 10: Example 10. Non zero effects confounded on each macroblock

ble 10 with the corresponding efficiencies. The other non-zero effects are estimated with
efficiency 1.

7.2 Two-coset fractions: K = 2.

The information matrix A; for #; given in (83) is invertible if and only if the p—¢q columns
of QyZ, are independent. But, when K = 2, these columns are in C? and moreover, when
g > 1, they are in a subspace of C? of dimension < 1. So A, is invertible and #; estimable
onlyifp—g=1orqg=0,p=2.

e Case p=2,qg=0. Then
. 1 «
A1:Z121/2: [a ]

where (taking t = t9)
a=z13/2=[(BiBy)(t1 — t2) +1]/2 . (88)

The eigenvalues of A; are 1 + |a|, 1 — |o| and its determinant |A;| = 1 — |a|?. The
latter is 0 iff || = 1, equivalently iff (B;B,)(t; — t2) = 1. The maximum global
efficiency as measured by |A;| is obtained when the argument of (B;B;)(t; — ts) is
as near of 7 as possible.

e Case p—q =1, ¢ =1. The efficiency for v(By) is (Z7Z, — Z; Zo(Z; Zo) 1 25 21) /2 =
1— |af?

e Case p—q =1, ¢ =0. The efficiency is 1.
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Consider again Example 7. Since the product B; B, belongs to Ker ®, it is equal to
(AB)(CDEF)* and (B Bs)(t; — t2) = (—1)’j?*. Moreover if B; and B, are main effects
or two-factor interactions, either i or k is 0, hence |a|? = 0 or |a|? = 1/4, which leads to
the two efficiencies 1 and 3/4 previously found.
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