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ABSTRACT Many orthogonal factorial designs can be defined by abelian group
morphisms. By juxtaposition of such designs, useful non-orthogonal designs can also be
obtained, including the classical generalized cyclic designs, as well as a new kind of one
replicate factorial block designs. Their efficiencies are easily computed by means of a
complex reparametrization based on the irreducible characters of the groups involved.
The theory extends to the “group generated” designs defined by Bailey and Rowley [4],
in which the group is not necessarily abelian. In some cases, we give explicit formulas for
the efficiencies of these latter designs.
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1 Introduction

The abelian group theory may be used to construct many orthogonal fractional replicates
or block designs in confounding, as described in Bailey [1, 2, 3], and Kobilinsky [11, 12].
In these designs, Abelian group structures are given to the set of experimental units, the
set of treatments and , for block designs, the set of blocks. The mapping assigning a
treatment, or a block, to each experimental unit is then chosen among affine mappings,
which are the composition of a group morphism and a translation.

Using a complex reparametrization, associated with the irreducible characters of the
groups involved, a very simple description of aliasing can be given. One of the purposes
of this paper is to show how the same type of reparametrization can be used to obtain
the efficiency factors for the contrasts of interest in some more complicated situations, in
which the set of units is identified with a disjoint union of abelian groups and the mapping
assigning the treatments (resp. blocks) is affine on each of these groups. Generalized cyclic
designs [8] can be brought in that context. For them, the complex information matrix
is block diagonal. Each block involves only one treatment effect and the corresponding
efficiency factor is quite easy to derive.



With this complex reparametrization, we also analyse another new scheme, which
gives a useful method of blocking for single replicate factorial designs (section 7). In-
deed, with two or more replicates, it is possible to balance the loss of information due
to the blocks over the replicates, by confounding different sets of degrees of freedom in
the different replicates (see Bose [5]). But with only one replicate, even if there is a
restrictive model on treatment effects, total confounding is generally inadequate. The
method presented here gives then an alternative which leads to a certain balance in the
loss of information. Its principle is to realize the division into blocks in two steps. In the
first step, only negligible effects (generally high order interactions) are confounded. This
step gives a limited number of macro-blocks. In the subsequent division of macro-blocks
into blocks, the loss of information is balanced over the effects of interest by confounding
different sets of degrees of freedom in the different macro-blocks.

Both generalized cyclic designs and the preceding scheme are particular cases of the
group generated block designs studied by Bailey and Rowley [4]. It is therefore natural
to devote part of this paper to these block designs (section 5,6). In fact, there is a way
to obtain some of these designs which parallels the process described at the beginning
of this introduction : the set of units is identified with the set G/A of left cosets of
a subgroup A of the finite group G. The mapping assigning a treatment, or a block, to
each experimental unit is defined by the canonical surjection from G/A onto the set of left
cosets G/ B of a subgroup B containing A. We shall show that any of the group generated
block designs of Bailey and Rowley (BR) can be generated by juxtaposing such simple
designs. After having reparametrized with complex parameters as in the abelian case,
we will then generalize an explicit formula for the efficiency factor of treatment contrasts
given by BR in the abelian case to designs based on arbitrary groups (but satisfying a
criterion given by BR which guarantees their general balance). In that formula appears
an irreducible character of the group. When this character is linear (it is always the case
with abelian groups), we will see that it is in fact possible to give a simpler formula.

Before studying these designs, we will introduce some results about the complex
model (section 3). We will see that its use can notably simplify the calculations leading
to the estimates and their variances, as well as the demonstration of optimality of certain
orthogonal designs (section 4 and 6.5).

2 Preliminaries

We first recall some notations and results about abelian group generated design, in order
to motivate the following developments.

Suppose there are v crossed factors, having my, mo, ..., m, levels respectively. The
levels of the ith factor are labeled by the elements 0, 1, ..., m; — 1 of the cyclic group
of order m;, denoted by C;. The set of m = m; x ... X m, treatments can then be
represented by the product group 7"= C x ... x C,. The elements of T" are the n-tuples
t = (t1,...,t,), where t; € C;, and its addition is defined componentwise:

(t1y oo yty) + (B, yt) = (1 + 8, ..t + 1) .



The vector 7 of treatment effects is an element of the real vector space RT of
dimension m, which is naturally imbedded in the complex vector space CT. C7 is equipped
with the usual scalar product defined by:

(x,y) =x'y (2.1)

A useful reparametrization is obtained by decomposing 7 on the orthogonal basis of C
constituted by the irreducible characters of the group T [12, 14, 17] ([14] calls them simple
characters). To give explicitly these characters, we let 7% = C; x ... x C,, be a group
isomorphic to 7" and define a duality between T and T by

[t7,t] = ZtixtiM/m,- (modulo M) (2.2)
i=1
where t = (¢1,...,t,) € T, t* = (tf,...,t¥) € T*, and M is any common multiple of

mi, ..., My.

For 7 a primitive Mth root of unity (for instance n = e?™/M ), we associate to each

t € T* the vector n*", the tth coordinate of which is nlt™ el

" (t) =9 (2.3)

These vectors are precisely the irreducible characters of 7. They are orthogonal for
the usual scalar product of C'' and they have the same square norm, which is the number
|T| of elements in 7"

(0 0™y =0 fort* £s*, (n,0") =T]. (2.4)

The decomposition of 7 on the basis (%) can be written:
=) o, (2.5)
tXeTx
where:

o (2.6)

Qgx =

The nature of the complex parameter agx can be immediately deduced from the non

zero elements in t* = (¢7,... ,t). For instance:
1. if t* =(0,...,0), then ayx is the general mean:
T(tl,... ,t,,)
Qpx = —
2 T

t1y..0 0ty



2. if t* = (¢,0,...,0) where ¢; # 0, then ax is a contrast between the marginal
means for the different levels of factor 1, hence belongs to the main effect of factor
1:

X Tt,...,tu
e = Y g m 3 %
t1

t2,... 5ty

3. if t* = (¢7,¢5,0,...,0) with ¢ # 0, 5 # 0, then ayx belongs to the interaction
between factors 1 and 2, and so on.

The subsets of elements t* associated to a given effect (we include under this de-
nomination interactions as well as main effects) are thus easy to identify. An important
property of these subsets, which will be often used later, is that they are stable for the
operation t* +— —t*.

In many circumstances, some effects are assumed to be zero, so that the real vector
T satisfies the relation :

T = Z Oétx’l’]t>< (27)

tX eSX

where S includes all t* associated to non null effects. It must be noticed that S* contains
the opposite of any of it elements, and that the parameters associated to opposite elements
of §* are conjugated: ayx = a_¢x. If t* = —t*, ayx is thus a real parameter. But if
t* # —t*, ayx and a_gx are complex, hence cannot receive any interpretation. We could
replace them by two real parameters of the same nature, as it is done in [12]. However
calculations are easier if estimation is carried on directly on complex parameters and
results on real parameters subsequently derived. Indeed, any real linear form of 7 can
be expressed as a linear form of the vector a = (agx)ex € S* of complex parameters.
The point, made precised in the next section, is then that the least squares estimate of
that linear form and its variance can be derived from the model written as a function
of o exactly as if a were real. The normal equations in this last model, which will be
called a complex linear model, can be very simple, and the calculations consequently quite
simplified.

To write the model more precisely , suppose that the experimental design is defined
by the function u — ¢(u) assigning to each experimental unit u € U the associated
treatment in 7". Suppose also that the expectation of the explained variable y on unit u,
denoted by y(u), depends only of the treatment ¢(u) : E(y(u)) = 7(4(u)). Using (2.7)
and (2.3), we can express this expectation as a function of the parameters a;x:

Ey)= Y appl o] (2.8)

txesSx

In matrix notation, this becomes :
E(y) =X« (2.9)

where :



y = (y(u))uer is the |U| x 1 vector of observations,
X = (n[tx’d’(“)]) the design matrix
uel,tx €S

a = (ayx )gxesx the vector of complex parameters.

The stability of S* under the operation s* — —s* insures that the parameters in o
and corresponding columns in X are either real, or conjugated in pairs. This is the only
property which will be needed in the development of the next section.

When ¢ is a group morphism, X has a specially simple structure. Let U be decom-
posed as a product of k cyclic groups and M be an exponent of the two groups U and
T (i.e. a common multiple of the orders of the cyclic groups in the decompositions of U
and T). ¢ can be represented by an v X k matrix. There is a dual morphism, from 7
into U* (see [12]) whose k X v matrix ¢* satisfies:

Vvt e TVt € T, [t¥,¢u] = [¢"t", u] (2.10)

u, the product of the matrix ¢ with the vector u = (uq,... ,u,)’, is equal to the image
g

#(u) of u € U by the morphism ¢). The column of index t* in X is then: (n[tx’¢“]) .
ue

= (n[d’xtx’“]) = n?"**. Thus the columns of indices t and t; are either equal if
uelU

d*ty = ¢*t5, or orthogonal.

In the situation described above, there are v crossed factors respectively associated
with the components of the product T'= C; x ... x C,. Other situations where there are
nesting relations between factors can be handled in a similar way. The set of treatments
is also represented by a product 7' = C; x ... x C, of cyclic groups. The levels of a
factor can be defined by the values of any morphism defined on 7', and not necessarily by
the values of the coordinates on C', ..., (). The parameters a;x are also of interest in
these situations, and their nature (type of effect) can be deduced from t*. We refer to
Kobilinsky [12] for a more detailed account.

3 The complex linear model

3.1 The model

We consider the linear model :
E(y) = Xa, var(y)=o0?l, (3.1)

where y is the n X 1 vector of observations, X the n x p design matrix, which has complex
coefficients, and « the p x 1 vector of complex parameters.

We suppose, as it is the case in (2.9), that the parameters in a and corresponding
columns in X are either real or conjugate in pairs. More precisely, let J be a set indexing
the different parameters and denote by «; the j th coordinate of o and by x; the j th
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column of X. The above hypothesis amounts to the existence of an operation j — —j in
J, satisfying —(—7) = j, such that:

\V/] € J, X_j; = X_J (32)

Vied aj=a; (3.3)
To simplify notations, the set of vectors a = («;) satisfying (3.3) will be denoted by ©:
o= {a|V] € J a_j = aj}. (34)

(3.3) can be replaced by the apparently weaker following statement (supposing (3.2) true)

Xa is a real vector. (3.5)

It is clear that (3.3) implies (3.5). Conversely, if X3, where @ € CP is a real vector, then
it is possible to find a satisfying (3.3), i.e. belonging to ©, such that Xa = X3. To find
this o, we split the terms g;x; with 7 = —j, and the partial sums g;x; + f_;x_; with
j # —j, into their real and imaginary components. X3 being real is equal to the sum of
the real components which are :

o for j = —j:
R (Bj%x;) = a;x;, where a; = R (5;)

e for j # —j:

(Bjxj + B-jxj) + (B,;%; + B_X )

— 2 —
_ (Bi +B85)%; “‘2(5—1 +8;) x- = % + 0%

R (Bjx; + B-jx—j) =

where

Bi+B_;
2

i+ B,
and o_; = u

OZj: 9

The o; defined above are the coordinates of the sought vector a.
The expectation model can be written in a more geometrical form :
E(y) e ENR" (3.6)
where E is the subspace Im X of C", which is self-conjugated:
E=E. (3.7)

The following proposition gives an interesting property of such a subspace, which will be
used in section 6.



Proposition 3.1 Any self-conjugate subspace of C* has a real basis.

Proof. Let E be a self-conjugate subspace of C*. We form by recurrence a basis of E
which belongs to R". Suppose that the k first vectors ey, ... ,ex of this basis have been
chosen, where k£ < dimE. Let x be a vector of E outside the space H generated by e;,
., e, in C". Then x + X and ix — iX are two real vectors of E generating the same
subspace as x and X. One of them does not belongs to H and can be chosen as e;.; l

3.2 Least Squares Estimate

The least squares estimate of F(y) under model (3.6) is the orthogonal projection of y on
the subspace ENR™ of R”. The next proposition states that this projection is identical
to the orthogonal projection of y on the subspace E in C".

Proposition 3.2 Let P be the operator of orthogonal projection on a self-conjugate sub-
space E of C*. Then the restriction of P to R" is the operator of orthogonal projection
on ENR".

Proof. For every y € R*, Py is the point of E which is closest to y, and hence such that:
- P 2 — : o 2
Iy = Py]|]" = min [y — x|

The following equalities then show that Py is the point in E closest to y, that is the
orthogonal projection of y on E.

_P—2: —P 2 — ] — 2 _ 1 — %2 = 1 _ 2
ly = PylI" = lly = Pyll* = min ly — ][ = min ly - X|[* = min[ly — x|

and therefore, Py is the point in E closest to y, i.e.the orthogonal projection of y on E.
As E = E, we have Py = Py. Thus Py belongs to R* and is the orthogonal projection
ofyon ENR" R

Let P be the operator of orthogonal projection on the subspace E = Im X of C". If
a@ is a vector in C? such that Py = X &, we shall say, as in the real case, that & is a least
squares estimate of a. From the orthogonality between y — Py and Im X, the following
normal equations, where X* = Y’, are immediately obtained:

X'Xa=X"y (3.8)
If (X*X)~ is a generalized inverse of X* X, we have :
Py=Xa&a=[X(X"X) (X*'X)]|&=X(X"X)" X"y
hence the expression of P as a function of X is :

P=X(X"X)"X". (3.9)



3.3 Real reparametrization

To get the preceding results, it is also possible to use a real reparametrization. For each
a € O, we define a real vector of parameters 3 by the equality:

B=Na (3.10)

where N is an invertible matrix such that, for each j, the columns of indices j and —j
are conjugated. An example of such a matrix is given in [12].

Proposition 3.3 The mapping o — B is a one to one correspondance between © and
RP.

Proof. If a € ©, Na clearly belongs to R?. Moreover, the mapping a — N is injective.
The surjectivity follows from the following lemma, which implies that N~!3 belongs to
O for every B € R B

Lemma 3.1 Let N be a square invertible matriz whose rows and columns are indexed by
the elements of J. If the columns (resp. rows) of indices j and —j are conjugate for every
j € J, the rows (resp. columns) of N~ of indices j and —j are conjugate for every j € J.

Proof. Let R be the matrix of the permutation of J which exchange j and —j for every
pair of distinct opposite elements 7, —j of J. The product matrix NR is deduced from
N by exchanging the columns associated to opposite elements, which are conjugated by
hypothesis. Hence NR = N, and consequently :

RilNil :Nﬁ :N_l

It follows from the last equality that in N~! the rows of indices j and —j are
conjugates W

The expectation model in 3.1) can thus be written :
E(y)=XN"'8 (3.11)

where 3 is a vector of RP (and X N ! a real matrix). The operator of orthogonal projection
on XN is:

P=XN'(N*"'X*XN" )" N'X*=XN'[NX*X)" N | N*'X* = X(X*X)"'X*

A least square estimate of 3 is B = Na, where & is given by (3.8), and so on.



3.4 Estimability

A linear form ,lphab —< a,a > on C? will be said to be estimable in the model (3.1) if
it admits an unbiased estimate < b,y >, in other words if there exists a vector b € C*
such that :

Va €0, <a,a>=<b,Xa> (3.12)

It is easy to see that the subset © generates CP. Since < b, Xa >=< X*b,a >, (3.12)
implies that a = X*b. Conversely, if a = X*b for a b € C", then (3.12) is satisfied.
Hence < a, a > is estimable if and only if a € Im X*.

Moreover, we have: < b, Xa >=< Pb, Xa >=< X(X*X)"X*b, Xa >=< Xc¢, Xa >,
with ¢ = (X*X)~X*b. Hence, the estimability of < a, & > is also equivalent to the exis-
tence of a vector ¢ € CP such that :

Va e, <aa>=<Xc, Xa> (3.13)

It must be noticed that Xc is uniquely defined, even if ¢ is not.

A linear form < a, a > of the parameters will be said to be real if it is real for every
a € O. An equivalent condition is that a € ©, i.e. that the coordinates a; of a associated
to opposite elements of J are conjugate:

V] S J, a; = d,j (314)

This last condition clearly implies that < a, a > is real for every a € ©. Conversely,
suppose that < a, a > is real for every @ € ©. By taking a such that o; =1, o ; =1
and oy = 0 for each £ # j, we see that a; + a_; is real. Taking then a such that a; =1,
a_; = —i and o = 0 for each k # j, we see that i(a; — a—;) is also real, and condition
(3.14) follows.

A necessary and sufficient condition for < a,a > to be simultaneously estimable
and real is that there exists a real b such that a = X*b. If bisreal, < a,a >=< b, Xa >
is real for every a € O, since X ¢ is then real. Conversely, suppose < a,a >=< b, Xa >
is real for every a« € O and let b = by + iby be the decomposition of b into its real
and imaginary part. We have < by, Xa >= 0 for o« € O, hence X*by = 0 and finally
a= X*bl

Moreover, if < a, & > is estimable and real, we can choose the vector ¢ of (3.13) to
be in ©, i.e. such that:

VJ eJ C; = E,j(3.15) (315)
(the demonstration is analogous to that of the equivalence between (3.3) and (3.5)).

In factorial design, one is concerned with the subsets of parameters corresponding
to the different effects. In section 2, we saw that such subsets are associated with subsets
of T which are stable for the operation t* — —t*. This leads us, in the more general
context of model (3.1), to study effects associated to subsets of J which are stable for the
operation j — —j.



So, let J; be a subset of J satisfying:
jeh = —j€J; (3.16)

By definition, the (real) linear forms of the effect associated to Jy are the (real) linear
combinations of parameters «; for j € J;. Let us partition o as (o, ar1), where oy is
formed by the coordinates of index j in .J;, and X accordingly as (Xo, X1). Then, the
linear forms of this effect are the linear forms < a;, oy >. They are real if and only if the
coordinates associated to opposite elements of J; in a; are conjugate. The set of vectors
a; = (a;), j € Ji, satisfying this last condition will be denoted O;:

@1 = {a1|Vj S Jl, a_; = aj.

A linear form < a;, o > is estimable if there exists b € C" such that < a;, a1 >=<
b, Xa >. Since < b, Xa >=< b, Xjaxy > + < b, Xj; >, we have a; = X{b and
0 = X;b. Thus b is orthogonal to Im X, and satisfies b = (Qyb, where (), is the operator
of orthogonal projection on the orthogonal complement of Im X in C*. Moreover, if b is
chosen in Im X (b = Xc), we have b = QyXc = QpX;cy, and finally a; = X7QoXc;.

Conversely, if there exists c; such that a; = X{QyX;c;, < a;, a3 > is an estimable
contrast of the effect associated to J;. b = (QyXic; is then the only vector in Im X such
that < a;,a; >=< b, Xa > for every a € ©. The following proposition sums up the
preceding results:

Proposition 3.4 A linear form < a;, a; > is estimable if and only if there exists ¢, such
that a1 = X{QoX1c1. It is real if and only if the coordinates of a; associated to opposite
elements of J, are conjugate, or equivalently if c1 can be chosen so that its coordinates
associated to opposite elements of J; are conjugate.

3.5 Estimation of linear form of the parameters

It is well known that the minimum variance estimate of a real linear form < a,a >=<
b, X >, where b € R, is:

<a,&>=<b,Xa&a>=<b, Py >=< Pb,y > (3.17)
The variance of this estimate is:
var(< a,& >) = 0> < Pb, Pb >=0?> < Pb,b >= ¢%a*(X*X)"a (3.18)

Thus, the variance is given by a formula analogous to that used when the incidence
matrix X is real. The only difference is the replacement of the transpose by the conjugate
transpose. We don’t have to worry about the fact that the expectation space is not the
whole Im X, but only the real part of it.

When b = Xc, the estimate is < b, y > and the variance 0> < b, b >= o%c*(X*X)c.

If < a,a > belongs to the effect associated to Ji, it can be written as < a;, oy >
with a; = X{QoXici. Its least squares estimate is then < (QQyXicq,y > with variance
0% < QuXic1,QuXic; >= 02¢i X;QoX1c, = 0?a}(X7QuX1) a;. (the last equality follows
directly from the definition of a generalized inverse).
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Proposition 3.5 Let < a;,aqy > be a real estimable linear form of a. Its least squares
estimate is < ay, &y > where & = (X7QoX1) X;7Qoy. The variance of this estimate is
o?a}(X{QoX1) ay.

The matrix X;QoX; will be called the information matrix for a;.

4 Optimality and efficiency

4.1 Optimality

A good design is one which estimates the contrasts of interest with a variance as small as
possible. Since it is generally not possible to get a minimal variance for all these contrasts,
one usually defines a global measure of variance, such as the determinant, the trace, or the
first eigenvalue of the matrix of covariance of a suitably chosen set of (real) parameters.

In factorial design, the different effects do not have the same importance, so that it
is better, rather than to define an overall measure of variance, to consider first each effect
separately.

So, we let J; be the subset of J, satisfying (3.16), associated to a given effect. Xy,
Xy, 4lphaby, ay, Qo are defined as at the end of section 3.4. Finally, we let ¢ be the
number of elements of Ji: ¢ = |J;|. Since the family of «;, where j € J;, is stable by
conjugation, a ¢ X 1 vector 3, of real parameters can be deduced from a; by an invertible
transformation N having its columns associated to opposite parameters conjugate:

B, =Naoy (4.1)

If all the parameters o for j € J; are estimable, the matrix X7()oX; is invertible and the
covariance matrix of the least squares estimator 8, is o2V, where:

V = N(X{QoX;) 'N* (4.2)

In this paper, we shall only compare designs with the same error variance o2, and shall
therefore no longer take this parameter into account.

Since it is sometimes desirable to compare designs with different numbers of experi-
mental units, we multiply V' by the number n of units to get a per unit covariance matrix.
We can then use the logarithm of the determinant [logdet(nV')], the trace [trace(nV)] or
the first eigenvalue [Anax(nV')] as a measure of global variance for this effect. If X;QoX;
is not invertible, we can define this measure to be 400 since such a situation is clearly
undesirable if we are equally interested by all the contrasts of the given effect.

The preceding measures are maybe more clearly defined from the eigenvalues A,
..., Aq of the per unit information matrix:

_ N*il(XfQoXl)Nil
n

C (4.3)
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which is the inverse of nV when V exists. If we adopt the convention that 1/0 = +o0,
we can write them:

Po(C) = Zlog)\% [for logdet(nV) | (4.4)
h(©) =Y Ai ffor trace(nV)] (4.5)
o (C) = max)\ii [for Apax(nV)] (4.6)

Kiefer [10] gave a useful tool to find in some situations the best design(s) with respect to
the above measures of variance. That tool works in fact for a larger family of functions v
of C': 1 is any function defined on the set M of symmetric positive matrices of dimension
g %X q, with values in | — 0o, +00[, which satisfies:

(a) ¢ is convex: YjaA+ (1 —a)B] < ayp(A)+ (1 —a)y(B) for 0 <a <1
(b) ¥(aA) is non increasing in the scalar a: oy < g = (a1 A) > P(arA)
(c) v is orthogonally invariant: ¢)(N'AN) = 1(A) for every orthogonal N.

(c) is equivalent to:

(c’) ¥(A) depends on A only through the eigenvalues of A.

If D is the set of matrices C' associated to the different designs under consideration,
and [ is an upper bound of trace(C)/q, i.e:

8> sup trace(C')

4.7
ceD q ( )

we have:
Proposition 4.1 ¢(C) > ¢(51,) for all C € D

Proof. Let t = trace(C)/q and A = diag(Ay, ..., ) the diagonal matrix with the eigen-
values of C on its diagonal. If p is any permutation of 1,... , ¢ and pA the matrix obtained
from A by permuting rows and columns according to p, we have (pA) = ¥ (A) by property
(c). Let then G be a transitive group of permutations of 1, ..., ¢ (G = S, for instance)
and A = (ZpeG pA) /|IG|. We clearly have: A = tI,. It follows then from properties (a),

(b) and (c) that:

ZpGG Y(pA)

v(C) = wlh) = =T

> p(A) > (PL,)

Corollary 4.1 If Cy = BI, belongs to D, the corresponding design is optimal with respect
to any v satisfying (a), (b), (c).
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Such a design is called universally optimal in D. Even when it does not exist,
Proposition 4.1 gives a useful upper bound to 1(C) which can be taken as a reference to
define efficiency.

This corollary is Kiefer’s proposition 1’. In fact, Kiefer’s result is a little more
general. He establishes a one to one correspondance €'+ C which to each matrix C' € D
associates a (¢+1) X (¢+1) matrix C with zero row and column sums. Instead of condition

(c), he only requires that 1)(C) = w(C) where w is invariant for each permutation of rows
and (the same on) columns of C.

Still different conditions are given by Mukerjee [15], quoting Sinha and Mukerjee
[18]. Instead of (c), they require the weaker condition that ¢ itself is invariant for each
permutation of rows and (the same on) columns. They then replace (b) by:

(b’) ¥(al, + f11") > 1(al,) whenever a > a + f.

Proposition 4.2 Suppose that the matriz N in (4.8) is unitary and that trace( X7 X /(nq)) <
B for any of the designs considered. We then have trace(C)/q < B for every C € D, hence

Y(C) > Y(BI,) for every e satisfying (a), (b) and (c).

N is unitary iff N*N = 1I,. A simple example of unitary NN is obtained by taking
Bj = oy if j = —j and B; = (a;+a_;)/V2, B-; = (—ia; +ia_;)/V2if j = —j. (see [12]).
Proof.

ntrace(C) = trace[N* "' (X7QoX1)N '] = trace [(X;QoX1)N'N*!]
= trace [X[QoX1] < trace [X;X;] < ngB .

The first inequality stems from the same inequality for diagonal elements: if x is a
column of X, the inequality for the corresponding diagonal elements is ||Qox]||*> < ||x||?.
[ |

In model (2.9), all the elements of X, hence of X;, are of modulus 1, whatever
the function ¢ defining the design is. Therefore we have trace [X;X;/(ng)] = 1, and the
proposition applies with 3 = 1. To get then a design with corresponding matrix Cy = I,
we must have:

(1) QoX1 = Xi, which means that the columns of X; are orthogonal to the other
columns of X.

(2) X;X; = nl,;. In the context of section 2, this last condition is satisfied if the
factor associated to the considered effect has equireplicate levels (for an interaction, we
mean the product factor naturally associated).

Call a design equireplicate if each of the factors in the model has equireplicate levels.
With orthogonality defined as in Tjur [19], we have:

Proposition 4.3 If X has the form given in (2.9) and N is unitary, an equireplicate
orthogonal design is universally optimal for the estimation of any of the factorial effects.
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It should be noted that it is also optimal for the estimation of any subspace of real
contrasts generated by a self-conjugate subset of parameters {c;, j € Ji}.

Proposition 4.3 is the analogous, in Tjur’s terminology, of a result expressed by
Mukerjee [15] in term of orthogonal arrays.

When N is not unitary, we get a weaker result by replacing universal optimality by
D-optimality. Indeed,

o (C) = logdet(nV) = logdet [Nn(X;QoX1) ' N*|
= log{det N det [n(X;QoX;) '] det N*}
= K +logdet[n(X;QoX1) ],

where K = log(det N det N*) is a constant independant of the design.

Another application of proposition 4.2 will be given in section 6.5.

4.2 Efficiency

Since we are mainly concerned, throughout this paper, with treatment contrasts — that
is with linear forms b*r where b*1 = 0 — we shall speak of “contrast” rather than of
“linear form of the treatment parameters”, even when all the linear forms involved are
not contrasts. Moreover, we shall use the word ”efficiency” instead of ”efficiency factor”
(as defined in John [9]) since we always assume, when comparing different designs, that
they have the same error variance.

The efficiency of estimation of a contrast is defined by comparison between the
variance of estimation in the studied design A and that in a reference design A,., ordinarily
chosen as a completely randomized factorial design with one replication of each treatment.
The model for this reference design A, is FE (y,) = 7 = X,a, where 7 is the vector of
treatment effects. The vector o will always be chosen so that X*X, = |T|I,. Hence the
per unit information matrix D, for a; in A, is the identity matrix:

X5 X0
-Dr — rl<r
T

=1, (4.8)
This is equivalent to saying that the coordinates a; of a are orthogonal linear forms of 7
of square norm |T| [this is clearly satisfied by the vector a in the model (2.9)].

The per unit information matrix D in A is

The efficiency eff(a) with respect to a real contrast a*a; (a € ©) is defined as 0 if

the contrast is not estimable, as the ratio of variances a*D, 'a/a*D~a if it is estimable,
—i.e. if a belongs to Im D,

0 if agImD

eff(a) = { a*D'a/a*D~a if a€ImD (4.10)
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A good way to study the behaviour of the design with respect to the subspace
E of real contrasts of a; is to examine the principal contrasts ajau,...,ajan, where
a; is the vector in ©; maximising eff(a), a; the vector in ©; maximising eff(a) with
the constraint aD'a; = 0, and so on. The corresponding efficiencies will be called the
principal efficiencies. The word “basic” has also been used instead of “principal” to define
the similar notions in the context of block design [16].

By lemma 3.1, the mapping b — a = N*b is a bijection from R, onto ©;. To find the
principal contrasts, we can therefore search for the vector by in R, maximising eff(N*b),
the vector by maximising the same quantity with the constraint b*ND_ ! N*b; = 0, and
so on. We then have: a; = N*by, ..., a, = N*b, and the principal contrasts are
ajoy = b Noy =bi8, ..., aja; = by 8.

Let C' and C, be the per unit information matrices for 3, in A and A, respectively:
C=N"'DN' C,=N"'DN! (4.11)
The replacement of a by N*b in (4.10) gives

0 if bgImC

b*C;'b/b*C~b if beImC (4.12)

emwm={

The following proposition then follows from well known results of principal component
analysis.

Proposition 4.4 The principal efficiencies for the subspace E of real contrasts of o, are

the eigenvalues A\, > ... > )\, of the matriz CC', which are equal to the eigenvalues
of DD, ' = X{QuX1/n. If by, ..., b, are the corresponding eigenvectors of CC,?,
the principal contrasts are b\, ..., bfﬁy They are equal to ajay, ..., ajon, where

a; = N*by, ..., a, = N*b, are D, *-orthogonal eigenvectors of DD, *.

Hence studies of efficiency can be made directly on the complex information matrix
provided the subset of parameters considered is stable by conjugation.

We shall now suppose that N is unitary, so that C, = I, and CC; ! = C'. If a global
mesure of efficiency eff(E) for the contrasts in E' is requested, a reasonable choice is

$(Ly)
/

where 1 satisfies conditions (a), (b) and (c) of the preceding section. By proposition 4.2,
if the set J; of indices in o satisfies (3.16) and if trace(X;7X:/(ng)) < 1, then

eff(E) =

psi(C) (4.13)

off(E) < 1 (4.14)

The same inequality is in general not guaranteed for a single contrast, unless this contrast
is in fact a real parameter «; where j = —j, because we can then apply (4.14) to the one
dimensional subspace E generated by c;.
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5 Cyclic designs

5.1 Introduction

Cyclic designs are block designs obtained by developing cyclically one or more initial
blocks. A good account on them can be found in David [6]. Generalized cyclic designs were
defined by John [8] as a generalization of cyclic designs using an arbitrary abelian group
instead of a cyclic one. Bailey and Rowley (BR) [4] studied a still larger class of designs of
the same kind, the construction of which involves a (non necessarily commutative) group
of permutations of the set of treatments.

In order to avoid a multiplicity of notations, we shall group all these designs under
the general denomination of cyclic designs. This is not a source of ambiguity since the
context will always make clear the nature of the group involved and the precise type of
construction. Moreover, the properties of the design do not really depend on the group
being cyclic or commutative, so that there seem to be no reason other than historic to
base the terminology on these characteristics of the group.

5.2 Operation of a group on a set

We let T be a set of treatments and G a (multiplicative) group operating on 7" (see [13]).
The operation associates to each pair (g,t) in G x T a product gt in 7. Equipped with
this product, T is called a G-set. To each element ¢ in GG is then associated a permutation
0g :t = gt of T', and the mapping g — o, from G into the group Sr of permutations of
T, is a group morphism.

We recall that the orbit of an element t in 7T is the set of all gt for ¢ € G. The
different orbits form a partition of 7. For a given t € T, the set of g in G such that
gt = t is a subgroup of G called the stabilizer, or fizator, or isotropy group of t. It is
generally denoted Gy. There is a one to one mapping gG¢ — gt from the set G/Gy of left
cosets of Gy onto the orbit of t, and we shall often identify these two sets by this bijective

mapping.

We also need the following classical definition:

Definition 5.1 (G-morphism) Let U and T be G-sets. A G-morphism from U to T is
a mapping ¢ satisfying ¢(gx) = go(z) for every x € U and g € G.

In other words, a G-morphism is a mapping making the following diagram, where 7, and
o4 are the permutations induced by g on U and T respectively, commutative:
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If F is a subgroup of G, there is a canonical operation of G on the set G/F of left cosets
hF of F defined by:

g(hF) = (gh)F' .

If H is a subgroup of G including F', the canonical surjection gF +— gH from G/F onto
G/H is a G-morphism.

5.3 Definition and structure of cyclic designs

In the simplest case, a cyclic design is the set of blocks obtained by applying the per-
mutations induced by the elements of G to an initial block. Such a set of blocks will be
called a cyclic set. More generally, a cyclic design consists of a combination of several
cyclic sets, possibly equal.

Following BR, we shall authorize the initial block to be a multiset of treatments.
Roughly speaking, a multiset is a set K = {t1, ..., t;} which can contain the same element
several times. To define it more precisely, we must specify the set [K| of distinct elements
and the number of occurrences of each of these elements. Hence a multiset K can be
defined as a function K from [K] into the set N of natural number: K(t) is the number
of times t appears in the multiset K. A multiset K can also be defined as a sequence
(t1,-..,tx), provided sequences containing the same elements with the same numbers of
occurrences are identified. We shall of course speak of multiset of treatments when the
elements of the multiset are treatments. From the operation of G on 7', an operation of
G on multisets of treatments is derived:

g(t1, ... tg) = (gt1,. .., gty) .

With these notations, we have:

Definition 5.2 (Cyclic set) Let K be a multiset with elements in the G-set T. The
cyclic set with initial block K is the block design whose blocks are the multisets in the
orbit of K.

In BR terminology, this is called a thin (G, y) design. 7 refers to the partition into
blocks of the set of experimental units.
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In John [8] and David [6], the term “cyclic set” stands for the design having one
block g K for every g, and the design given by definition 5.2. is called a “fractional” cyclic
set. However, it is clear that the first design consists of repetition of the latter, and has
therefore no special interest in itself. So, we prefer to use the more concise denomination
“cyclic set” for the basic design given by definition 5.2.

Definition 5.3 (Cyclic design.) Let K, ..., K4 be multisets with elements in the G-
set T and By, ..., By be the sets of blocks of the cyclic sets having respectively K, ...,
K, as wnitial blocks. Then, the cyclic design with initial blocks K1, ..., K4 is the block
design having the disjoint union of By, ..., By as set of blocks.

In BR terminology, it is called a (G, ) design. If Ky, ..., K, are equal, the cyclic
design is said to be homogeneous. The cyclic sets defined in John and David are thus
particular case of homogeneous cyclic designs.

Theorem 5.1 below gives a sufficient and necessary condition for a block design to
be a cyclic design, in term of G-morphisms. A block design can be seen as a pair (¢, ¢p)
of mappings from the set U of experimental units into the set T of treatments and the
set B of blocks respectively : ¢r(u) and ¢g(u) are the treatment and block assigned to
unit u.

Theorem 5.1 A block design (¢, o) is a cyclic design with treatments in the G-set T
if and only if it s possible to define operations of G respectively on U and B such that ¢r
and ¢p are G-morphisms.

This theorem is part of theorem 4.1 of BR, though expressed in different words. The fol-
lowing demonstration gives several interesting subresults which are not explicitely quoted
in BR. We first give a description of a G-morphism as juxtaposition of quotient maps.

Definition 5.4 (Elementary G-morphism) A G-morphism ¢ from A to B will be said
to be elementary if G is transitive on A and on B simultaneously.

Proposition 5.1 Let G, and G, be subgroups of G such that G, is included in a conjugate
zGyz™t of Gy. Then the mapping G, — gxGy is an elementary G-morphism from G /G,
onto G/Gy. Conversely, any elementary G-morphism ¢: A < B can be identified with
such a mapping by taking G, and Gy as the stabilizer of elements a € A and b € B, and
x such that ¢(a) = xb.

Proof. Let G, and Gy be subgroups of G such that G, C zGyz~!. If g and h are in the
same left coset of G, then g 'h € G,, hence z '¢g 'hx € v 'G,z C Gy and consequently
gz and hz are in the same left coset of G,. The mapping gG, — gxGy is therefore well
defined, and it is clearly an elementary G-morphism. Conversely, we have ¢(ga) = gxb.
If we identify G/G, with A and G/G), with B by the mappings ¢G, — ga and ¢gGy — gb,
the mapping ¢ is identified with the mapping ¢G, — gxG, B
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Corollary 5.1 Let ¢: A — B be an elementary G-morphism, a an element of A and b
its image by ¢: b= ¢(a). Then the stabilizer G, of a is included in the stabilizer Gy, of b
and ¢ can be identified with the canonical mapping G, — gGy from G/G, onto G/Gy.

If Ay, ..., A; are G-sets, we denote by A, LI... 1l A, the G-set which is the disjoint
union of Ay, ..., A; with the operation naturally induced by that of A;, ..., A;. The
next proposition states that any G-morphism can be built by juxtaposition of elementary
G-morphisms.

Proposition 5.2 Let Ay, ..., Ay, By, ..., Be be transitive G-sets and fori=1,... ,d,
let ¢;: Ay — By be an elementary G-morphism. Then the mapping ¢ from A =
AiU...UA; to B= By U...U B, which coincides with ¢; on A; fori =1,...,d is a
G-morphism. Conversely, any G-morphism ¢: A — B can be obtained in this way. Ay,
..., Ay are the orbits of G in A and By, ..., B, those of G in B. Then ¢; is the mapping
coinciding with ¢ on A;.

The proof is straightforward.

Let now K be a multiset with elements in the G-set T', and G its stabilizer. The
proposition below is the natural extension of a result of Dean and Lewis [7].

Proposition 5.3 K is a disjoint union of orbits Ggty, ..., Ggts for Gg, where tq, ...,
t, are s possibly equal treatments.

Proof. If treatment t appears K (t) times in K, every element gt in Gkt appears equally
K(t) times in gK = K. Hence, we can group the treatments in K as indicated in the
proposition l

REMARK. If K is a disjoint union of sets Ht for a subgroup H of G, then H
stabilizes K and is thus included in G'x. This shows that G g is maximal among these
subgroups.

We consider now a cyclic design (¢r, ¢g). We let K be the initial block of one of the
constituent cyclic sets and By the corresponding set of blocks. If ¢:Gk, ..., g,Gk are
the distinct left cosets of G in G, these blocks are ¢; K, ... , g, K. By proposition 5.3, K
is a disjoint union Gty Ll ... LI Ggts. We can therefore write the cyclic set as in table 1
below. The corresponding set of units is partitioned into subsets Uy, ... , U as indicated
by the dotted lines. The treatments appearing in a given subset U; are all the treatments
in the orbit of t;. Consider then the t; belonging to the orbit 7't of a given element t.
Let L(t) be the corresponding subset of indices . For each [ € L(t), choose z; in G so
that t; = x;t. Let G, GG} be the stabilizer of K and t; G; = letx;I the stabilizer of t;;
and finally Gx; = Gk N G, the stabilizer of t; in Gi. Then Bgx and T; can be identified
with G/Gk and G/Gy by the bijections gK — gGk and gt — gGy respectively. We then
have:

Proposition 5.4 Ifl € L(t), we can identify U, with G/Gg, and the mappings ¢p and
o1 restricted to U, with the elementary morphisms ¢G g — gGi and gG g — gx;Gy.
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blOCkglK glGKtl glGKts

block go K : ¢:Ggty : i goG ity
block.gps K : gGkt1 - © Gkt
S—— N——
Ui U,
Table 1:
Proof. Let hiGgy, ..., h.Gk; be the elements of Gx/Gk;. The elements of the orbit
Gkt; are hity, ..., h,t; and can be identified with the left cosets h1Gky, ... , h,Gk;. The
set of treatments g;Gkt; appearing in the block ¢g;K and subset of units U; is equal to
{g;hati,... ,gjh.t;} and can be identified with the left cosets g;h Gk, ..., gjh,Gky of

Gk in gjGk. The whole subset U; can therefore be identified with the set G/Gk; of left
cosets of Gk in G, the elements of which are precisely the left cosets g;h;G'x;, where 7
varies from 1 to r and j from 1 to b. If we make this identification, the treatment assigned
to unit g;h;G k; is g;hit; = g;hizit whereas the corresponding block is g;h; K = g; K

The “only if” part of theorem 5.1 is a consequence of this proposition and of propo-
sition 5.2. Indeed, the disjoint union Ugy = Liicrt)U; contains all experimental units in
By with treatments in T; and is therefore equal to Ugy = ¢5'(Bk) N ¢ (T't). The set
U is itself the disjoint union of the subsets Uk, where K describes the initial blocks and
T the orbits of G in T'.

The “if” part of the theorem follows from the next proposition.

Proposition 5.5 Suppose, in a given block design, that the mappings giving respectively
the treatment and block assigned to each unit are two G-morphisms ¢r : U — T and
¢p : U — B. Then, the reciprocal image of the elements of a given orbit in B constitute
an homogeneous cyclic design. The initial block is the multiset K of treatments applied
to the set of units ¢3'(b), where b is a representative of this orbit.

Proof. If V is a subset of U, we shall denote by K (V') the multiset of treatments assigned
by ¢7 to the units of V. Since ¢r is a G-morphism, we have K(gV') = gK (V). Note that

K =K (¢5'(b)).

For every g in G, we have ¢5'(gb) = gé5' (b). Hence, for every g in the stabilizer
Gy, of b in G, we have ¢3'(b) = ¢3'(gb) = gé5'(b) and consequently K = gK. It
follows that the stabilizer Gy, of b is included in the stabilizer G of the multiset K. Let
h1Gy, ..., h.Gp be the left cosets of Gy, in Gk and ¢:Gk, ..., gsGk those of Gk in
G. The elements of G/Gy, are the r x s left cosets g;jh;Gp, and the blocks in the orbit of
b are therefore the r x s blocks g;h;b. The multiset in block g;h;b is K [qb,}l (gjhib)] =
K [gjhi(;ﬁl}l (b)] = g;h;K = g;K. Hence, each of the multisets g; K of the cyclic set with
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initial block K appears in exactly r blocks: the blocks g;hib, ..., gjh,b associated to
the left cosets of Gy in g;Gk, q.e.d. B

6 The linear model of a cyclic design

6.1 Homogeneous decomposition

We consider a cyclic design defined by two G-morphisms ¢ : U — T and ¢p : U — B.
To simplify the description of the associated linear model, we shall use a classical result
of the theory of linear representations known as Schur’s lemma. We first briefly give some

notations and results of this theory. A more detailed account can be found in BR [4],
Serre [17], Ledermann [14], or in Lang [13] (chap XVII, XVIII ).

If T'is a G-set, each g € G induces a permutation o, on 7" and a linear endomorphism
R, of CT defined by

Ry(a) = a0, (6.1)

The inverse o, of o, is also the permutation associated to g~*. Hence we have o, '(t) =
g~ 't for t € T and the coordinate of R,(cx) on t is

Ry(a)(t) = a0, (t) =a (¢7't), (6.2)

where a (g7't) is the coordinate of a on g~'t (recall that C" can be considered as the
set, of mappings from 7" to C so that the composite map of 09—1 :T7Tand a: T — C is
defined and belongs to CT).

If (e¢)ser is the canonical basis of CT', we immediately deduce from (6.2) that
Rg(et) =€yt - (63)

The column t in the matrix of R, therefore has 1 in the row gt and 0 elsewhere. This
matrix is called the permutation matriz of o, and will also be denoted by R, if there is
no risk of confusion.

The mapping g — R, is a linear representation of G in C”, called the permutation
representation of G in CT. This representation makes C” into a G-module (Serre [17],
chap 6), the product ga of g € G by a € C" being defined by

go = Ry () (6.4)
We now recall some important results about G-modules. A submodule W of a G-
module E' is a subspace of F which is G-invariant, that is to say satisfies giW C W for

every ¢ € G. A G-module different from {0} is irreducible (one also says simple) if it
admits no proper submodule.

Theorem 6.1 (Maschke) . Every G-module E admits a direct sum decomposition E =
W1 & ...® Wy into irreducible submodules W1y, ..., Wy.

21



Such a decomposition will be called an irreducible decomposition.
If £ and F' are G-modules, a G-homorphism # : E — F'is a linear mapping satisfying
Va e EVge G, 0(ga) = g0(a) (6.5)

Alternatively, it can be defined as a linear mapping making the following diagram com-
mutative for every g € G:

0
E - F
R.q Sg
E F
0

Here, R, and S, are the linear mappings induced by g on E and F' respectively.

The fundamental result concerning G-homomorphism is:

Theorem 6.2 (Schur’s lemma) Let E and F be irreducible G-modules. Then a G-
homomorphism 0 : E — F' is either an isomorphism, or else the zero map.

If0 : E — Fisa G-homomorphism, Schur’s lemma can be applied to the components
of the irreducible decompositions of £ and F' to get a simplified description of §. To be
more precise, we first introduce some notations.

Let Vi, ..., V, be the distinct non-isomorphic irreducible G-modules, and x, ...,
Xr the associated (irreducible) characters [14, 17]. Consider then, in an irreducible de-
composition £ = W, @ ... @ Wy, the sum E; of submodules W} isomorphic to V;. This
submodule E; is in fact the sum of all submodules of E isomorphic to V; and is there-
fore independant of the irreducible decomposition considered. If there are n; submodules
isomorphic to V; in the irreducible decomposition, E; is G-isomorphic to the n;-fold di-
rect sum of V;, and has n;x; as character. It will be called the G-homogeneous subspace
associated to x;. Note that E; can be reduced to {0}.

E can be decomposed into the direct sum of its homogeneous subspace:
E=FE&...9E, (6.6)

This decomposition, coarser than any irreducible one, is called the G-homogeneous de-
composition of E (BR). The character = of E is equal to Y n;Y;, and n; is called the
multiplicity of x; in m. If n; = 0 or 1 for every 7, 7 is said to be multiplicity free.

The following corollary of Schur’s lemma shows how the study of a general G-
homomorphism can be reduced to that of G-homomorphisms between two direct sums of
the same irreducible G-module.
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Corollary 6.1 Let 0 : E — F be a G-homorphism and for each irreducible character x;
of G, let F;, F; be the homogeneous subspace of E and F respectively associated to x;.
Then we have 6(E;) C F;.

The G-homomorphism # can thus be decomposed into a block diagonal form 6 =
diag(6s, ... ,0,) where 6; is the G-homomorphism from F; to F; coinciding with 6 on F;.

We now go back to the case of a permutation representation g — R, of G in C*. The
mappings R, act by permutation of the coordinates (see (6.2)), hence they are unitary
for the usual scalar product of C7':

(Ryar, RgfB) = (e, B) . (6.7)

It follows (Serre, section 1.3) that the W; in the irreducible decomposition of C"', can be
chosen orthogonal, so that:

Proposition 6.1 Let T be a G-set and CT the corresponding G-module. The homoge-
neous decomposition of CT is orthogonal with respect to the usual scalar product.

The following results link this section to section 4 on the complex model.

Proposition 6.2 Let g — R, be a permutation representation of G in CT and W an
irreducible submodule of CT, of character x. Then W is also an irreducible submodule of
CT, of character X, which is either equal to W, or else has an intersection with W reduced

to {0}.

Proof. If Q is a G-invariant subspace, R,(£2) C €2 for each g € G. Then since the matrix
R, is real, R,(Q) C Q for each g € G, and (2 is also G-invariant. W being G-invariant, W
is also G-invariant. If Q) were a proper submodule of W,  would be a proper submodule
of W, which is absurd. Hence W is also irreducible. The intersection W N W is a G-
invariant subspace of W, hence it is {0} or W. If it is W, we have W C W, hence W = W
because W is irreducible.

Finally, if (a;) is a basis of W and ()\;;) the matrix of R, on W with this basis, we
have Rja; = > A a;, hence R,a; = > \;;a;. The matrix of R, on W, with the basis
(&;),is therefore (X;;). Since trace (\;;) is the conjugate of trace (\;;), the value on g of
the character of W is X(g) and the character of W is Y. W

It is easy, using proposition 6.2, to modify the recurrent process leading to an irre-
ducible decomposition CI' = W, & ... ® W, so that the W; are either self-conjugate, or
conjugate in pairs.

Consider now the homogeneous decomposition C!' = E, & ... ® E,, where E; is the
sum of the irreducible submodules W of character x;. E; is the sum of the irreducible
submodules W of character ;. If x; is real (x; = ¥;), it is equal to E;. Otherwise, it is
equal to the homogeneous subspace F; of character x; = ;, which is distinct from F;.
Hence we have:

23



Proposition 6.3 Let g — R, be a permutation representation of G in C*'. Let x1,... , Xr
be the irreducible characters of G, and for i = 1,...,r let E; the homogeneous (possibly
null) subspace associated to x;. Then CT is the direct orthogonal sum of the E;. If x; is
real, E; is self-conjugate. If x; and x; are distinct conjugate characters, E; and E; are
conjugate. The E; can be further decomposed into direct sum of irreducible submodules
Wij: B = Wi @ ... 8 W, in such a way that (i)if x; is real, the W;; are either self-
congjugate or conjugate in pairs, (it)if x; and x; are distinct conjugate characters, n; = n,
and le = Wil-

Let now E =V, @& ... ® V,, be a decomposition of E such that the V; are either
self-conjugate or conjugate in pairs. We can choose a basis (e;;) such that, for a fixed 4,
(ei;); is a basis of V; and:

(1) if V; =V, the e;; are real (proposition 3.1)
(2) if V} = Vz and ] 75 i, then € = €.
We shall say that such a basis is coherent with the decomposition £ =V, ®...8V,,.

To use the corollary of theorem 6.2 (Shur’s lemma) in the context of cyclic designs,
we need a supplementary result. For each mapping ¢ : U — T, we let X : CI' — CV
be the linear mapping induced by ¢, which is defined by X7 () = ao ér.

Proposition 6.4 If 7 : U — T is a G-morphism, X7 : CT' — CV is a G-homomorphism.

Proof. Let p, and o4 be the permutations induced by g € G on T" and U respectively, and
R, and S, the corresponding linear mapping of C'" and CY. By definition of R,, S, and
X7, we have:

Ry(a) =aop,', Sy(B)=B-0,', Xr(a)=a-¢r.

Since ¢p is a G-morphism, we have for every g € G: p;' o ¢p = ¢roo,'. For every
o € CT, we then have o ¢roo, ' = o p; 'y, which is equivalent to

Sy(Xr(a)) = Xr(Ry(c)) -

Hence S, X1 = XrR, for every g and X is a G-homomorphism H

Let now A be the cyclic design defined by the G-morphisms ¢r : U — T and
¢ : U — B, where U is the G-set of experimental units, T' the G-set of treatments and
B the G-set of blocks. Let X7 : Cr — CY and Xg : C® — CY be the G-homorphisms
induced by ¢r and ¢p respectively. If the corresponding matrices in the canonical basis
are also denoted by X7 and Xpg, the model associated to A is

E(y) = Xr7+ X5€, (6.8)

where 7 € R is the vector of treatment effects and £ the vector of block effects. A
useful reparametrization can be obtained by decomposing 7 and £ on the homogeneous
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decompositions CT' = Er1 @ ...® Ep, and C® = Eg; @ ... ® Ep,. In order to obtain a
model of the form (3.1) which satifies (3.2) and (3.3), matrices Ay = (Az1, ..., Ap,) and
Ap = (Api, ..., Ap,) are chosen such that:

(i) their columns are basis coherent with the decompositions C' = Ep; @& ... ® Er,
and C? = Eg, @ ... ® Ep, respectively.

(ii) the columns of Ap; and Ap; span Ep; and Ep; respectively.

We then have

T=Arar = Anor + -+ Aprory (6.9)

£ = Apap = Apiag + -+ Aprap, , (6.10)

and the model (6.8) can be written in the two following forms, where X = (X7 A1, XpAg)
and Xz = (XTATiaXBABi):

E(y) =Xa= XTATaT + XBABaB(611) (611)

E(y) = Xia1+---+ X,

6.12
= XrAmorn + XpApiapy + -+ -+ XrAproar, + XpAprar, . ( )

If B @ ...® Ey, is the homogeneous decomposition of CV, the G-homomorphism
XT sends ETi = Im ATi into EUia and similarly XB sends EBi = Im ABi into EUi (by
the corollary of theorem 6.2). Since the homogeneous subspaces Ey; are orthogonal, the
blocks X; are orthogonal to each other. It follows that the matrices QgXrAr;, where
Qp =1 - Xp(X;Xp)~ X}, is the operator of orthogonal projection onto the orthogonal
supplementary of Im Xg, are orthogonal. Consequently, the per unit information matrix
D for the vector ar of treatment parameters can be put under a block diagonal form:

D= A;X;QBXTAT/’I’L = diag(Dl, st ,D,-) (613)
where D; is the per unit information matrix for a;, equal to

By construction, the matrices Ap; are either real if x; is real, or conjugate by pairs
(Ar; = Ag; if X; = X;- Since X7QpXr is real, the same property holds for the matrices
D;: D isreal if x; is real and D; and D; are conjugate if x; and x; are conjugate complex
irreducible characters.

We index the columns of Ar (and the coordinates of ar) by a set Jr, and define
the opposite —j of each j € Jr as follows: (1) if j indexes a column of an Ap; such that
X; is real, —j = j;

(2) if j indexes a column of an Ar; such that x; is not real, —j is the index of the
conjugate column in the matrix Ap; = Agpy.
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We can also index the columns of A and coordinates of ag by a set Jp and define
the opposite —j on Jp in a similar way. If J is the disjoint union of J; and Jp, the
matrix X of model (6.11) satisfies the condition (3.2) and o consequently satisfies (3.3)
(by Lemma 3.1). All the requirements for a complex linear model are therefore satisfied by
the model (6.11) and the development of section 3 applies. Since we are mainly interested
in treatment contrasts, we define ©r as the set of vectors oy = (;), 7 € Jr, whose
coordinates associated to opposite elements of Jr are conjugate:

Or = {aT|VJ € JT, a_; = aj} (615)

Besides leading to a block diagonal information matrix, the decomposition (6.9) of
7 on the homogeneous subspaces often has another advantage. In several circumstances,
it bears a sensible relationship with the decomposition of interest for the experimenter.
This is illustrated by the reparametrization (2.5) which is a particular case of (6.9) (see
below). Another interesting example using a non abelian group is given by BR (example
5.3).

The Homogeneous Subspaces in the Commutative Case. Suppose that T and G are
abelian additive groups and that ¢ : G — T is a group morphism. Let G operate on T
by gt =t + ¢(g). Once cyclic group decompositions of G and T have been chosen, ¢ is
identified with its matrix and its dual ¢* can be defined. Then the homogeneous subspace
associated to the irreducible character 79" is the subspace spanned by the vectors nt”
where t* satisfies ¢*t* = —g*. Indeed, if R, is the permutation representation of g in
CT and ¢*t* = —g¢*, we have

R, ("tx> (t) = 0" (t —dg) =nl*" 2
= 77[_¢th7g]77[tx7t] = tr’gx (g)l”tx (t)

Thus R, (ntx) = 19" (g)n*", and the subspace spanned by 5" is irreducible of

character 9", q.e.d.

If G is an abelian additive group operating on 7', each orbit Ty of an element s in
T is G-isomorphic to G/Gs. Recall that the operation of G/Gj is defined, for g € G and
t € G/Gg, by gt = t+ds(g), where ¢s : G — G /Gy is the canonical surjection. The above
result can thus be applied to each orbit and, by imbedding the associated characters nt"
into C', an explicit irreducible decomposition of C!' is obtained.

If in a cyclic design built with a G-set of treatments, G is commutative, the above
consideration can be used in conjunction with proposition 5.4 to get the information
matrices D; explicitly. Note that if G operates transitively on 7', the homogeneous sub-
spaces Er; are one dimensional. Now if the irreducible decomposition of C? is of the type
mentioned above, the D; are of the form:

a b’
Di_[b A}’

where a is a scalar associated with the treatment contrast in Ep;, A a diagonal matrix
of size the number of cyclic sets, and b a column vector. The detailed calculation of D;
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is not given but the reader can find in section 7 a similar type of calculation completely
developed. The efficiency for the treatment contrast can be deduced from D;. The result
is the same as that obtained in a slightly more general case in section 6.3.

6.2 Efficiency for treatment contrasts

Suppose that the homogeneous subspaces of the G-module CT are irreducible, or equiv-
alently that the characters of C*' are multiplicity free. Under this hypothesis, a cyclic
design with elements in the G-set 1" has a property of general balance which implies that
the efficiency is the same for all the contrasts belonging to a homogeneous subspace of R
(see BR [4] theorem 5.6). This efficiency was given by BR in the case of abelian group
design. We shall show that their formula also hold in the non abelian case, and shall give
for the abelian case an interesting alternative form of it.

We consider again the cyclic design A defined by the two G-morphisms ¢ and
¢p. The model for the reference design A, (see section 4.2) is E (y,) = Arar. The
corresponding per unit information matrix is D, = A% Ar/|T|. To simplify the expression
of the efficiency, the columns of the matrices Ar; are chosen orthogonal and of square
norm |7T’|, so that

D, = = Iy (6.16)

To obtain principal contrasts and efficiencies, we are then led to search for the eigenspaces
and eigenvalues of the per unit information matrix D appearing in (6.13). Since D is block
diagonal, this search can be done separately for each D;. To each eigenvector a of D; is
associated an eigenvector ar of D having the same eigenvalue A as a. Written in parti-
tioned form, ar has a in the ith position and 0 elsewhere: ar = (0,...,0,a’,0,...,0)

The corresponding linear form of ar is a*ar; = ahar = ahAs7r/|T|. Notice that
Arar = Ar;a is then an eigenvector of C' = |T|X;QpXr/n having the same eigenvalue
A and belonging to the homogeneous subspace Ep;. If x; is real, D; is real and a can
be chosen real. a*ay; is then real and defines a principal contrast. If x; is not real, and
X;j = X, then ais an eigenvector of D; with the same eigenvalue A. The vectors ar and ar
can be combined to form two new orthogonal eigenvectors of D, with the same eigenvalue
A, and belonging to ©7: (ar + ar), (iar — iar). These two vectors define two principal
contrasts having the same principal efficiency A.

To determine explicitly the principal efficiencies, we need the following results:

Proposition 6.5 Let g — R, be a representation of G in a complex vector space F'
and F1 & ... ® E, be the homogeneous decomposition of F. The projector P; of F' onto
E; associated to this decomposition is given by the following formula, where x; is the
wrreducible character associated to Ej;:

R=X0 Y xwr,.

geaG
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Proof. See Serre [17], theorem 8)

P; will be called the canonical projector on Ej;

Proposition 6.6 Let ® : FF — H be a G-homomorphism and Pr and Py be the canonical
projectors onto the homogeneous subspaces associated to a given irreducible character x
in F' and H respectively. Then, we have ® Pr = Py®.

Proof. Let g — R, and g — S, be the representation of G in F' and H respectively. We
have

Pr= % S X Ry P = % S X0)S,

whence:

ore = XD S 590k, = X S75(0)5,0 = Prom

geq

Proposition 6.7 Let g — R, be a permutation representation of G in C' and Q the
operator of orthogonal projection onto a G-invariant subspace of C'. Then QQ commutes
with the Ry (QRy = R,Q), i.e. Q is a G-homomorphism.

Proof. Let Wi be this G-invariant subspace and W its orthogonal complement. Since the
R, are unitary, W is also G-invariant. If o = a; + g is the decomposition of a vector a
of C'' on W, and W, the decomposition of Rya on Wy and Wy is Ry = Ryay + Rgos.
We then have Qa = o, QR = Ry, and QR = Ry = RyQoc B

We now go back to the cyclic design defined by the G-morphisms ¢ : U — T
and ¢p : U — B. We denote by R, and S, the permutation matrices (and corresponding
operators) of g in L, and CY respectively. Since the linear mapping X7 : CI' — CV induced
by ¢r is a G-homomorphism, we have for every g € GG

XTRg == SgXT (617)

This implies Ry X7 = X7.5;. Multiplying this last equality by R, on the left, S; on the
right, we obtain

X35, = R, X} (6.18)

It is clear that Im Xz is a G-invariant subspace of CV. Hence by proposition 6.7, Qg
commutes with S,:

QBSg = SgQB (619)

From the above equalities, we immediately deduce:

Proposition 6.8 X7QpXr commutes with R, for every g.
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When all the blocks have the same size, this result also follows from theorem 4.2 of
BR [4]. As a consequence of it, we have:

Proposition 6.9 If the homogeneous subspace Er; of CT is irreducible, it is included in
an eigenspace of X;.QpXr.

Proof. See BR [4], theorem 5.1 (with C instead of R) and remarks following it.

As a matter of fact, theorem 5.1 of BR [4] shows that an irreducible decomposition
@;W; of CT' can be found such that each W; is included in an eigenspace of X;QpXr.
The number of distinct eigenvalues of X7.Q)p X7y on Ep; is thus at most the multiplicity
of x; in the character of the permutation representation.

If E7; is an homogeneous irreducible subspace of CT' and ( the eigenvalue of X;QpXr
on it, we have X;QpXrAr; = (Ar;. Using then (6.14) and (6.16), we obtain
T
D;=), A= Cu (6.20)
n
If Er; is self-conjugate, A is the efficiency for any contrast of the real vector ar;. If
the conjugate of Er; is a distinct homogeneous subspace Er;, the information matrix D;
being conjugate of D; is also equal to A\I. Hence A is the efficiency for any real contrast
of ar which depends only of ar; and ar; = ary;.

To simplify the notations in the following developement where Er; is fixed, we let
E = Er;, x = x; and denote by P the canonical projector on E. The homogeneous space
E is supposed to be irreducible. The corresponding eigenvalue ¢ of X7Q Xy is calculated
by the equality

T X QpXrT = (17T, (6.21)

valid for any 7 € E. Here 7 is chosen as the projection Pe; of a vector of the canonical
basis of CT'. Before calculating ¢, let us point out that:

(1)The homogeneous subspaces are orthogonal. Hence P is the operator of or-
thogonal projection on E and satisfies P* = P and PP = P. P commutes with the
G-homomorphism X3QpXr (proposition 6.8 and 6.7).

(2) If s € T is in the same orbit as t: s = gt, we have R e, = e,, hence since P and
R, commute (proposition 6.7) we have

Pe; = R Pe, (6.22)

(3) To the decomposition of T" into distinct orbits 71, ..., T, of G is associated an
orthogonal direct sum decomposition V; & ...@® V,, of C' into G-invariant subspaces: V;
is the set of vectors (oy) such that a; = 0 when t ¢ T;. The V; will be called the transitive
constituent subspaces and V; @ ... ® V,, the transitive constituent decomposition of CT.
The irreducible subspace E is included in one of the transitive constituent, say V;. Then
Pe; = 0if t € T;. Moreover, Pe; cannot be equal to 0 if t € T;. Otherwise Pe; would
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be 0 for every s € T} [by 6.22], P would be 0 and E would also be {0} contrary to the
assumption of irreducibility.

(4) The treatments belonging to a given orbit T are equireplicated. This is so
because if s and t belong to the same orbit in 7" and g € G is such that s = gt, the map
u — gu is a bijection from ¢'(t) onto ¢;'(s). We shall denote by r; the replication of
any treatment t in Tj: r; = |¢7. (t)].

Proposition 6.10 For every T in V;, we have 7" X1 XoT = r;7°T.

Proof. Let T be a vector in V;. We have 7(t) = 0 for t ¢ 7 and therefore

TX;XrT = Y ep |(XrT)(w)]? = 3oy |7 (6r(w)) |”
= Yier |07 @) |T(V)]? =TT |

(5) Let By, ..., B be the distinct orbits of G in B. Partition Xp as (Xpi1,... , XBe)
where Xp; contains the columns of Xp indexed by an element b € B;. All the blocks in
an orbit B; have the same size k;, so that X}, Xp = kI, and the operator of orthogonal
projection on Im Xp can be decomposed as:

XpXp

Py = Xp(X;Xp) ' X5 =) p
l

l

(6.23)

Calculation of the principal efficiency in E. We choose T = Pey where t € T; and
E C Vj, so that 7 is not 0. Then

(1) We have
P XiXer = rrtr = reiPe = RO Y, o wo)ei R

Tj 1 ~ * T 1 —
- ]Iz’(\ : ZSJEG X(9)eieq = J|XG(| : deat xX(9) »

where Gy is the stabilizer of t in G. The last sum can be further simplified using Frobenius
reciprocity theorem ( [14], th3.1). Denote by x¢ the restriction of x to Gy, by 1g, the
trivial character of Gy and by lgt the character induced by 14, on G. We have

1 _
|Gt| Z X(g) = <1Gt’XGt>Gt =< lgt,X >a -
geGH

Moreover, it follows from the definition that 1% is the permutation character m of the
operation of G on G/GY, hence also the permutation character of the operation of G on the
orbit 7} of t, which is the character of the G-submodule V; too. E being a homogeneous
irreducible subspace of Vj, the multiplicity of x in 7 is 1 so that

<1gt,X>G = <7T,X>G =1.

Finally, we get

. TXpXpr  x(D|Ge  x(1)
T = = =
rj G| |51

(6.24)
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(2) T X5QpXrT = T* X; XoT — 7* X P X7 , where Py = I — Q) is the operator
of orthogonal projection onto Im Xg, and

T X7 PpXeT = e{P*X;PpXrPe, =e{ X PpXrPe;
X3 X(9)et X5 Ps Xy Rye, = X5 37 X(g)e; X7 Pp Xreg
= % Zg Y(Q)Qg )

with
= etX PBXTegt (625)
The eigenvalue ( is then
¢ = T XpQpXTT _ T T—[x(1)/|G1 3, x(9)ag
_ ] _Tig X(9)ag T
= TR

and the efficiency of any real contrast of ar; and ar; is given by

i T| [T] 224 X(9)4

A= n n |Gy

(6.26)

If we use formula (6.23) and put ¢y = e; X7 X5 X5, Xreg, we have g = ), cqi/ki; hence

rl T T 221 k) 225 X(9) ot

\ =
n n |G|

(6.27)

cq is the concurrence of treatments t and gt within the set of blocks B;, which is homoge-
neous by proposition 5.5. The concurrence e; X7 X g X5, Xres between two treatments in
the same orbit can be obtained by examination of an initial block K in B;. We note first
that if B, is the disjoint union of d cyclic sets with initial block K, the total concurrence
is d times the concurrence within one of these cyclic sets. Theorem 4.4 of BR [4] gives
then a method to calculate the concurrence of t and s within this cyclic set. Let G(s,t)
be the orbit of (s,t) in G. This concurrence is > K(x)K (y)|Gst|/|G x|, where the sum is
other pairs (z,y) in G(s,t), G is the stabilizer of (s,t) in G and Gk the stabilizer of K.
Since there is |G|/|G k| blocks in each cyclic set, |B;| = d|G|/|G k| and

By
“=al

Y K@)K(®)|Gal - (6.28)
(z,y)EG(s,t)
REMARKS.

(1) Let R be a system of representatives of the conjugacy classes in G, and for each
r € R let C(r) be the class of r: C(r) = {g|g = h~'rh}. Since x(g) is constant on each
conjugacy class, we have

ZY(Q)Q&J = ZY Z qg -

TER geC(r)
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Though ¢, = e; X} PgXrey depends on the choice of t in 7}, the partial sums ) | gEC(r
do not depend on it. Suppose indeed that s = ht, where h € G, and put h(g) = hgh™*

e:X}PBXTeh(g)S = e:X}PBXTRhegt = e:RhX;PBXTegt = eIX;PBXTegt .

The third equality uses the identity Rjes = e; equivalent to e = Rpe;. Now since h(g)
enumerates the class C'(r) when g does, we have

> i XiPpXreq= Y € X7PpXrenge= Y eiX;PsXreys .
geC(r) geC(r) geC(r)

(2) Case r; = r, k; = k. Suppose that the treatments are equireplicated and the
blocks equal-sized. Let r and £ be the common values of the r; on one side, of the k; on
the other. Then

ri|T| =r|T|=n,

1
= etX PBXTegt = E 9
where ¢, = e; X7 X X5 Xrey is the element of coordinate (t, gt) of the matrix X; X5 X5 X7
This element is the concurrence between treatment t and treatment gt.

The efficiency then become:

1>, %(9)cq
=1 s (6.29)
If G is semiregular on 7', then Gy = {1} and we find that A = 1 — v where v =
(1/rk) >_,X(g)cg- This is the quantity found for the intrablock efficiency by BR in the
case where (G is abelian, T is identified with G and the operation is defined by translation:
gt = g+ t. Notice that if |G = 1, the dimension of E must be 1 and x is therefore a
linear character.

ExAMPLE. We consider the example 5.3 of BR [4]. The treatments are the ten
genotypes of some plant obtained by crossing all pairs of five pure parental lines, but
omitting self-crosses and ignoring the gender of the parents. They are identified with
the set T' of unordered pairs from {1,2,3,4,5}. G is the symmetric group Ss in its
action on unordered pairs. We consider the cyclic set A generated by the initial block

= {{1,2}{3,4}}. The elements of the stabilizer of K are the eight permutations
generated by (1,2), (3,4), (1, 3)(2,4):

0, (1,
1 1

); (3,4), 1,
,3)(2,4), ( 1

2
’472’3)7 (1’3’2’4)’ (

Hence A contains 5!/8 = 15 blocks which are all the pairs of genotypes with no
parental lines in common. The concurrence of two treatments is 3 if they are identical,
1 if they have no parental line in common, 0 otherwise. For i = {1,2,3,4,5}, define the
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element v; in C” by v;(t) = 1if i € t, v;(t) = 0 otherwise. Let Fy and E be the subspaces
of CT spanned by v; + vy + -+ + vs and {vy, vo, V3, v4, v5} Tespectively. Then it can be
shown that the homogeneous decomposition of CT is Ey @ E; & E; where E; = E N EOL
and F; = E+. These subspaces are irreducible and the associated characters xo, X1, X2
are given in table 2 (using the usual notation for the conjugacy classes which is given in
[14]). To calculate the corresponding efficiencies, we can use (6.29), with r = 3, £ = 2.
We choose t = {1, 2} (we could choose any other element of 7" since Sj is transitive on T').
The number of elements of Gy = G2y is 12. The number of elements of each conjugacy
class such that ¢, = 1 or ¢, = 3 is given at the bottom of table 2. The sums ) X(g)c,
deduced from these numbers for x = xo, X1, X2, and the corresponding efficiencies Ay, A1,
Ao, appear on the bottom of table 2.

conjugacy No. of No. of g € G such that
class elements X0 X1 X2 cg=1 cg =3

1 1 1 4 5 0 1

2 10 1 2 1 0 4
22 15 1 0 1 6 3

3 20 1 1 -1 0 2
2.3 20 1 -1 1 12 2

4 30 1 0 —1 6 0

) 24 1 -1 0 12 0

> x(g9)cq 72 12 48

Eﬂiciency /\0 =0 Al = % AQ = %

Table 2: Characters of Ey, Ey, E; and corresponding efficiencies

To obtain, in each conjugacy class, the numbers of g satisfying ¢, = 1, note first
that the concurrence ¢, between {1,2} and ¢g{1, 2} = {g1, g2} is 1 iff the couple (g1, ¢2) is
one of the following six: (3,4), (4,3), (3,5), (5,3), (4,5), (5,4). Let us select one of these
couples, say (3,4). The corresponding permutations g € S5, which send 1 to 3 and 2 to 4
are listed in table 3. The similar tables for the other couples are obtained by permutation
of the numbers 3, 4, 5. Hence to get the sought numbers, it is sufficient to multiply by
6 the numbers in the last row of table 3. The row for ¢, = 3 in table 2 is obtained even
more simply by noting that ¢, = 3 if and only if g is one of the 12 permutations of the
stabilizer G{l’g}.

6.3 Efficiency when the irreducible character involved is linear

When the dimension of the irreducible homogeneous space E is 1, that is when x is a
linear character, formula (6.27) can be simplified. The sum » ., cis 1) K () K (y)|Gst|
in (6.28) is readily seen to be the same as

> K(hs)K(ht) .

heG
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Conj.class Perm. g number

1 0

2 0

92 (13)(24) 1

3 0
245

2 Gy 2

1 (1324) 1
13245

g 213524; } 2

Table 3: Permutations sending 1 on 3, 2 on 4

Now

Writing ¢’ = hg and using the fact that s = gt, this becomes
By
= S ') 3 KK ()
h
which, using the linearity of y, is equal to

'|gl|‘ Z S XNK(GOK),

or
2

1B
G|

> X(¢)K(g't)

Substitution in (6.27) now gives

il T (T 22 (Bl k)| 32, X(9) Kalgt)
n n |G| G|

The advantage of this formula on (6.27) is that the coefficients of X(g) in it are directly

known and are generally 0 or 1 according to the presence or absence of the treatment gt
in the initial block.

A= (6.30)

If the stabilizer Gk of a multiset K is not reduced to the identity, the sum ) x(g) K (gt)

can be further simplified. Let indeed Gkg1, ..., Gk gy be the distinct right cosets of G
in G. If h belongs to Gk, we have K(hg;t) = K(g;t) (see proof of prop. 5.3). Hence

= (ZhEGK Y(h)) (X2 x(9:) K (git)) -

The first sum in the last product is equal to |G| if the restriction of x to Gk is the trivial
character 1, and is 0 otherwise. This follows from the following proposition.

34



Proposition 6.11 If x is a linear character of the group G and H a subgroup of G, the
sum Y,y X(h) is equal to |H| if xg = 1 and to 0 otherwise.
xu is the restriction of x to H, and 1g the trivial character 1 on H.

Proof. x i and 1p are linear, hence irreducible. The scalar product {1z, xz) = >,y X(h)/|H|
is therefore 1 if xy = 1y and 0 otherwise W

For each multiset K, we let

QUK) = |>_X(9)K (gt) (6:32)
g
From (6.31) and the proposition 6.11, it follows that:
_ L 1G22 x(9:) K (g:t)| if x(9) =1 on Gk,
QK) = { 0 otherwise (6.33)

where the g; are representatives of the distinct right cosets of the stabilizer G of K.

The next proposition sums up the preceding results. Let us recall that y is here a
linear character and F the associated homogeneous subspace, which is supposed to be of
dimension 1 (i.e. irreducible). E is included in the transitive constituent subspace V;},
associated to an orbit T; of G in T" and t is an element of 7}.

Proposition 6.12 The efficiency factor for any contrast (c,T) withc € E+ E is

— rlT| T 30, QU Bil/ k

A
n n |GGl

If G' is the commutator group of G and % the canonical surjection from G onto
G/G’, the linear character x can be deduced from an irreducible character x, of the
abelian group G/G' by the relation x(g) = xo(¥(g)) ([14], th 2.8). It is then clear that
the restriction of x to G is the trivial character 1 if and only if the restriction of x, to
¥(Gk) is the trivial character 1.

To find explicitly the characters xo whose restriction to ¢(Gx) is 1, we decompose
¥(Gk), G/G' and the quotient group (G/G')/v(Gk) as products of cyclic groups, and
denote by § the canonical injection from 9 (Gg) into G/G’ and by ¢ the canonical sur-
jection from G/G" onto (G/G")/¢¥(Gk). Then any irreducible character xo of G/G" is of
the form y, = 19" =, where ¢g* is an element of the dual group (G/G")* (see section 2).
Moreover

Xo(89) = n®" (8g) = n¢" 09 = ylo"e™]

hence the restriction of xo to ¥(Ggk) = Imd is 1 iff §*g* = 0. Since Kerd™ = Im ¢*,
this is also equivalent to the existence of an element h such that ¢* = ¢*h*. Thus the
restriction of x to Gk is 1 if x is of the form n®*** «¢). Then

X(0) = PP (i) = e ] = gt vtan]) i,
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where h; = ¢-1(g;) and the quantity Q(K) is

QK) = |Gkl |y 0™ MK (g:t)

ExAMPLE. Suppose there are 3 factors A, B, C at three levels each and nine blocks
of size 6. The set T of treatments is identified with the abelian group C?3, where C is
the cyclic group of order 3. G is taken equal to 7', which acts on itself by translation. A
suitable design is then provided by a cyclic set whose initial block K is made up of 2 cosets
Gi+t1, G+t of the subgroup G generated by (111)in G =T If hy = ¢(t1), ho = ¢(t2)
are the images of ¢, ¢, by the quotient mapping ¢ : G — G/Gk, and n = exp(27i/3), the
efficiency is

2
o L g g i 57X = 0 and g% = g*h%,
1 if 5% g% £0

Gk and G/Gg can be identified with C and C? respectively so that the matrices of §*
and ¢* are

5)( X
% C3)>< ¢ (CZ)X
11 1] 10
01
2 2
Table 4 gives all the scalar products [h*, k| for h* € (C?)* and h € C?, and also

the images g* = ¢*h*. If we take hy = (00), hy = (12), the efficiencies are

[h*, A]
h* h: 00 01 02 10 11 12 20 21 22 ¢* = ¢p*h*
00 0 0 0 0O OO 0O 0 0 000 1
01 0 1 2 0 1 2 0 1 2 o011 BC
02 0 2 1 0 2 1 0 2 1 022 B?C?
10 0 0 0 1 1 1 2 2 2 101 A C
11 0 1 2 1 2 0 2 0 1 112 ABC?
12 0 2 1 1 0 2 2 1 0 120 AB?
20 0 0 0 2 2 2 1 1 1 202 A4 c¢?
21 0 1 2 2 0 1 1 2 0 210 A’B
22 0 2 1 2 1 0 1 0 2 221 A’BC

Table 4: Scalar products [h*, h| and images ¢* = ¢*h*

for ABC? and A?B2C
for BC, B%C?, AC, AB?%, A?C?, A’B
for the other contrasts.

= O
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Whatever the choice of Gk, hy, hs, it is easy to see that there are at least two non
null elements h; and Ay in (C?)* with associated null efficiency. It is thus impossible to
find a cyclic set of the good size allowing the estimation of all factorial effects.

6.4 A case with non irreducible homogeneous subspaces of con-
trasts

Let T = U;csT; be the decomposition of T as a disjoint union of orbits for G and C" =
®,csV; the corresponding (orthogonal) transitive constituent decomposition. If Ej; is the
homogeneous subspace of V; of character x;, the orthogonal decomposition &, E;; of CT' is
such that V; = ®;E;; and Er; = @;E;;. If E;; is different from 0 for two or more indices 7,
Er; is not irreducible and the preceding developement does not apply. However, suppose
that only one of the images Xr(E;;) for j € J is nonorthogonal to Im Xp,;. Then the
formulas of section 6.2 can be applied without modification to each irreducible subspace

Indeed, X7 sends each Vj into the subspace of functions in CV which are null outside
¢7'(T;). Hence the images X7 (V}) of the different transitive constituents are orthogonal,
and the Xr(E;;) are also orthogonal (by corollary of Schur’s lemma). With the above
condition, the projections Q) p X7 (E;;) are equally orthogonal. Then the E;; are invariant
under X7.()p X7 and therefore included in an eigenspace of this last operator when they
are irreducible. We can then use (6.21) to calculate the corresponding efficiency with
T = Pey, where P is the operator of orthogonal projection on Er;, t an element of T; and
therefore 7 a non null vector of P(V;) = E;;. Note that if Xp(E;;) is orthogonal to the
blocks, we find r;|T|/n as efficiency (and 1 if all the r; are equal to 7).

It must be noticed that the transitive constituent decomposition of CI' does generally
not correspond to a sensible decomposition of the space of treatment contrasts so that,
in the preceding situation, some more calculations are needed to find the efficiency for
contrasts of interest. Moreover if some of these last contrasts are assumed to be null, the
orthogonality, for a fixed ¢, between the subspaces QX7 (FE;;) can be destroyed and the
formulas of section 6.2 therefore made invalid.

In section 7, a situation of this kind will be studied. 7" will be a commutative group
and G a subgroup of T operating by translation on 7.

6.5 Upper bound for the efficiency

Let Er;)icr be a family, stable for the conjugation, of homogeneous subspaces of CI' and
E; = ®;c; FEr; their sum, the dimension of which is denoted by ¢. Using proposition 4.2,
we are going to give an upper bound for the efficiency eff(Ey,.) where Ey,. is the space of
real contrasts ¢*T with ¢ € E; NRT.

We denote by X; = (X7Ar;i)icr the part of the design matrix X in model (6.11)
associated to Ey, and by ey = (a;)er the corresponding subvector of treatment param-
eters. It follows from (6.9) that Ey, is the space of real contrasts of a;. As in section 3.3,
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define a real vector 8; = Nay, by means of an invertible matrix N having conjugated
columns associated to conjugate parameters. FEj,. is then the set of all contrasts (a, 8;)
with a € RY.

Suppose that Ar satisfies (6.16) and that N is unitary. The efficiency can then be
defined as eff(Ey,.) = ¢¥(I,)/¢(C) where C, the per unit information matrix for 8, is
defined as in (4.3) with X instead of X; and 1 is a function satisfying the condition (a),
(b), (c) of section 4.1.

The blocks X7 Ar;, which belong to distinct homogeneous subspaces of CV, are or-
thogonal to each other. Consequently X7 X is block diagonal, with the blocks A%, X7 X1 Ap;
on the diagonal, and

trace(X;Xy) = >, trace(A}, X7 XpAp;) =, trace(XpAp AT, XT)
= Y e trace(|T| XrPiX7)

where P, = Ap;(A;Ary) P A%, = A A%, /|T| is the operator of orthogonal projection on
the homogeneous subspace E7; = Im Az;. The column associated to unit u in X7 is the
canonical vector e; of CT' having 1 in position t = ¢¢(u), 0 elsewhere. Hence

trace(|T|X7P,X7) = [T]) |67 (t)] e; P .
teT

It follows from (6.22) that efPe; is constant in every orbit T; of G in 7. We denote by
pi; the corresponding value, which we are now going to calculate.

As in section 6.3, let T" = U;c;T; be the decomposition of T" as a disjoint union of
orbits, CT = @;¢;V; the corresponding (orthogonal) transitive constituent decomposition
and E;; the homogeneous subspace of V; of character x;. Let F;; be the operator of
orthogonal projection on E;;. For t € T}, e, € V. Therefore e{ Pje; = e{ Pje; = p;;. For
t € T;, e Pje, = 0. Hence

dim(E;;) = trace(P;) = Y _ e; Pye, = Tj|pi; -
teT

This gives p;; = dim(E;;)/|T;| and
(T;)| dim ()

-1
trace(|T| X PX7) = |T| ) |97

oy T3]
. Finally,
* IT|32;eqler—1(T;)| dim(E;;)
trace(X7X1) = i ]EIJ T\Tj|J ’
D T ¢7 (T3 er im(Eij))
i€ T )
Put n; = |67 (T})|, ¢j = Yic; dim(E;;). n; is the number of units receiving a

treatment in 7; and ¢; is the dimension of E; N'V; (as a complex vector space). By
proposition 3.2, it is also the dimension of E; N V; NRY, that is the dimension of the
subspace of contrasts in Fr, which depends only of the effects of treatments in 7;. With
the above notations, we thus have:
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Proposition 6.13 trace(X;X;) = > ., n;[T|qj/|T;| < ngB where B = max;e; [T'|q;/|T;q.
We have > 1, with equality if and only if the ratios q;/|T;| are all equal. In particular
B =1 if G operates transitively on T.

Proof. Indeed, }_q; = > ;> dim(Ej;) = >, dim(Er;) = g and Y [T;] = [T']. If the
ratios ¢;/|T;| are all equal, they are also equal to ¢/|T| = (32;¢;)/(>2;175]) and B = 1.
Conversely, if 3 = 1 the ratios ¢;/|7}| are equal to ¢/|T’|. Moreover, if 3 were stricly less
then 1, we would have |T'|g; < |T}|q for all j; hence by summing over j, |T'|¢ < |T|q which
is absurd W

Proposition 4.2 implies that (C) > 1(f1,), hence

vl _ (1)
(o R A

The property (b) of section 4.1 shows that the last ratio is greater or equal to 1. It
is of course equal to 1 if § = 1.

7 Balancing the loss of information in factorial block
designs

From now on 7 is a commutative (additive) group and G a subgroup operating on 7" by
translation. The G-set of units is U = GyimesV with the operation h(g,v) = (h + g,v).
The G-morphism ¢ is defined by

dr(g,v) =ty + &(g) (7.34)

where ¢ is the canonical injection from G into 7. The elements ¢, are chosen so that the
family (¢, +G)yey includes r times each of the cosets of G in some subgroup 7} containing
(G. The design thus includes r replicates of the fraction 77 of 7. In most applications, r
will be 1.

The G-set of blocks is a disjoint union B = U,cy B, of quotient groups B, of G. We
write ¢, for the canonical surjection of G onto B,. Then ¢g is defined by

é5(9,v) = dBo(9) - (7.35)

The set G x {v} of units belonging to one of the blocks in B, is called a macroblock.

The commutative groups involved are decomposed as products of cyclic groups. The
same notation is then used for group morphisms, or elements of a group, and their repre-
sentations in these decompositions (but we write ¢g instead of ¢(g) when representations
are concerned).

The linear model of the cyclic design (¢, ¢p) is
E(y(g,v)) = 7(to + 8(9)) + &(dB4(9)) (7.36)
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The vector 7 of treatment effects is supposed to satisfy (2.7), with parameters agx, t* €
S, which are unconfounded on the fraction 77. In other words, if v is the canonical
injection from 7} into 7', then v* is supposed to be injective on S*.

&, is the vector of block effects in B,. It is decomposed on the orthogonal basis of
irreducible characters of the group B,:

61} = Z O,/bx’r]bx (737)
beBY

(7.36) is equivalent to:

EW(g,0) = 3 apenf 4ol 4 37 gpuyfboml,

tXesx bXeBX
hence to
E(y(g,v)) = > apen 00 4 N g pl?n.b 0] (7.38)
tXESx berf

Denote by B* the disjoint union of the B): B* = U,y B,. Let Zr and Zp be the
matrices, of dimensions |U| x |S*| and |U| x |B*| respectively, defined by

Zr ((g,v),tx) _ n[tX,tv]n[qutx,g] ’ (7_39)
(5,09 if bX € BX
Z ) =3 1 v 7.40
B ((g,v),b ) { 0 otherwise (7.40)
In matrix form, (7.38) becomes
E(y) = ZTaT —+ ZB(IB . (741)

Denote by Zr(,t*) the column t* of Zr and similarly by Zg(,b*) the column b* of
Zg. To study the model (7.41), we must determine the elements of ZZr, Z3Zg, Z5Zp,
which are the scalar products Here

(1) we have

2 (o 60), Zr (- t2)] = { 0 otherwise (742)

This is because the design is formed by 7 copies of the fractional set 77 and v* is injective
on S*.

(2)If b* € B,,

(Zr(.,£7), Zp(.,b*)] = plt™ ] antxwﬁubx,g] :
g

[Gnl™8)if 6% — ¢ b* =0
0 otherwise.

Z0(t%), Z(., )] = { (7.43)
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(3) If by and b3’ do not belong to the same subset B, of B*, then [Z5(.,b{"), Zg(., b5)]
is null. If by and b both belong to B, we have

[Z5(., DY), Zs(, by)] = D nl#5a®i-ba)al
9

Since ¢p, is surjective and its dual ¢}, consequently injective, the sum is equal to |G| if
b = by, to 0 otherwise. Hence

x xy — J |G| ifbi =b3
Za(b0). Za 5] = 7 P (7.4
(7.41) can be written in a form analogous to (6.12):
E(y) =Xa= Zng Qgx = Z(XTQX Qgx + Xng ang) s (745)

where

e Xpgx contains the columns of Zr associated to the elements t* of S* which have
g~ as image by ¢*,

e Xp,x contains the columns of Zp associated to the elements b* of B* which have
g* as image by ¢J,, where v is such that b* € B,,

[ ] ng == (XTgx,Xng),

e X is the matrix with the blocks X, put side by side: X = (X x,¢” € G*).

The matrix X*X is block diagonal: X*X = diag(X;«Xyx,9* € G*). Let Ji be a
subset of S* satisfying (3.16) and E be the subspace of real contrasts of the parameters
agx, t* € Ji.tTo find the principal efficiencies and contrasts in E, we can proceed first
separately within each block of X. We therefore fix ¢* and put

L= {t* e S*|p*(t*) = g*},

Ly ={t* € Ji[¢"(t*) = g"},
Lo={t"€S* = Ji[¢"(t") =g"} =L - L1,
Xpo = XBgx ,

Xro = (Xrgx(,t7),t" € Lo) ,

XO = (XBOaXTO) ’
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X1 = (XTgx(,tX),tx € Ll) .

X is thus the submatrix of Xp,x associated to parameters in E, while X is the
complementary submatrix, decomposed in two parts Xrg, Xpgg corresponding to treatment
effects and block effects respectively. (7.42), (7.43) and (7.44) show that, up to a reordering
of its columns and (the same reordering on its) rows, the matrix X7, « Xrgx has the form

Xle X{XTO XikXBO nl 0 |G|AT
X%oXl X;‘OXTO X;“OXBO = 0 nl |G|A3
XpoX1 XpoX1o XpeXBO |IG|A; |G|Ay |G|T

where if b* € B, and ¢p,(b*) = ¢°z,

A (6%, t7%) = ittt gx e L, .
Ao(bx,tx) — n[t?,tv]’ t* e L.

The per unit information matrix is D = X{QyX;/n where @y is the operator of orthogonal
projection on the orthogonal complement of Im X;. Since X; and Xy are orthogonal,
QX1 can be obtained as follows:

(1) Orthogonalize X o for X7, which leads to

X X
W = (I—M)XBO.
n

(2) Orthogonalize X, for W, which leads to

QX1 = [I-WW'W) W*] X; .
Finally,

D =

XL WOV W) WX, XiXo)  XiW (0 w) WX,
n n n '

Since X7, X; = 0, we have

W*Xl == XEOXl - |G|A1

XroX; G240 4;
W*W = Xp, (1— = TO)X30:|G\I—7| Aoy
n n
I (€] v : 1[Gl 4 g
n

Suppose now that Xpo has only one column. This is equivalent to the fact that
there is only one index v in 'V such that qﬁ;;v*l(gx is not empty (and is also equivalent to
the hypothesis formulated in section 6.4). Then:
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(1) AoAG = |Lo|, A1A] = |L1|
(2) By is a scalar: By =1 — |G||Lo|/n
(3) A7 is an eigenvector of D with corresponding eigenvalue A:
|G| L1|/n

A=1-— /7
1 —|G||Lo|/n

(7.46)
The orthogonal complement of A* in CI*!l is an eigenspace of D with corresponding
eigenvalue 1.

EXAMPLE. Suppose there are seven factors A4, ..., G at two levels each, 26 = 64
experimental units grouped in blocks of 4. We would like a design of resolution V, i.e.
allowing the estimation of all effects in a model containing the main effects and the
interactions between two factors.

Let C = [0,1] be the cyclic group of order 2. T is identified with C7. Then
T! = Ker ¢, and G = Ker ¢ where

Py = [1111111],

—_ O =
—
==
O = =
[

1 1
Vo= |1 0

0 0
The elements of T are written in the usual multiplicative way: AB for (1100000) for
instance. Thus Im ) contains the following elements:

1 ABCDEFG
ACDE B FG
BCDF A ECG
AB EF (CD G

This image is also the kernel of ¢*, where ¢ : G — T is the canonical injection. By
hypothesis, we have

S*= {A,B,C,D,E,F,G,AB, AC, AD, AE, AF, AG,
BC, BD, BE, BF, BG,CD,CE,CF,CG, DE, DF, DG, EF, EG, FG}

The sets L(g*) = {t* € S*|¢p*(t*) = ¢*} are therefore

{14, EGH{B, FGHC, DGH{D,CGHE, AGHF, BG}
{G, BF, AE,CDY{AB, EF}{AC, DE}{AD, CE}{AF, BE}
{BC, DF}{BD,CF}

To define the morphisms ¢g,, we identify G with C*. This is done so that ¢ has the
following matrix (the columns of which generate G = Ker ¢)¢):

1000
0100
0010
¢ = | 0001
1011
0111
0011
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One can define five different morphisms ¢g, on C* so that the images of their dual ¢,
have only 0 as intersection, for instance,

1000}

b = 0010
BL=™10 10 0 1]

sm=|0 0 o

1001]

0110
¢B4_[0111 }

¢B5:[1 011

We need only four of them. The efficiency for an individual contrast ayx is 1 if ¢*(t*)
does not belong to L,y Im ¢, , that is to say if the contrast is unconfounded with the
blocks in any of the macro-blocks G x {v}. If it is confounded if one of these macro-blocks,
the efficiency X is given by (7.46), where |L;| = 1 and |Lo| = |L(g*)|— |L1|. Since A = 2 if
|L(g*)| =2 and A =0 if |L(g*)| = 4, it is advisable to select the four morphisms ¢g, so
that the contrasts in {G, BF, AE,CD} are unconfounded. The image of these contrasts
by ¢* is g* = (0011) which belongs to Im ¢%,. Hence we choose V = {1,3,4,5}. The
family (t,),cv can be any set of representatives of the cosets of G into T3, for instance:

t; = (0010000) t; = (0011100)
t4 = (0011010) t5 = (0011001)

1 for the contrasts in {C, DG}, {D,CG}, {G,BF,AE,CD}

The efficienci h
¢ efliciencies are then /3 for the other contrasts.
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